Influence of Demand Uncertainty and Correlations on Traffic Predictions and Decisions

:  Decisions to improve a regional transportation network are often based on predictions of future link flows that assume future travel demand is a deterministic matrix. Despite broad awareness of the uncertainties inherent in forecasts, rarely are uncertainties considered explicitly within the meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2011-01, Vol.26 (1), p.16-29
Hauptverfasser: Duthie, Jennifer C., Unnikrishnan, Avinash, Waller, S. Travis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 16
container_title Computer-aided civil and infrastructure engineering
container_volume 26
creator Duthie, Jennifer C.
Unnikrishnan, Avinash
Waller, S. Travis
description :  Decisions to improve a regional transportation network are often based on predictions of future link flows that assume future travel demand is a deterministic matrix. Despite broad awareness of the uncertainties inherent in forecasts, rarely are uncertainties considered explicitly within the methodological framework due at least in part to a lack of knowledge as to how uncertainties affect the optimality of decisions. This article seeks to address this issue by presenting a new method for evaluating future travel demand uncertainty and finding an efficient technique for generating multiple realizations of demand. The proposed method employs Hypersphere Decomposition, Cholesky Decomposition, and user equilibrium traffic assignment. Numerical results suggest that neglecting correlations between the future demands of travel zone pairs can lead to improvement decisions that are less robust and could frequently rank improvements improperly. Of the six sampling techniques employed, Antithetic sampling generated travel demand realizations with the least relative bias and error.
doi_str_mv 10.1111/j.1467-8667.2009.00637.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855702252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855702252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4497-9e71e062b315d175a77bc05f98c3e4d3a0cc561fe03aa8b41ffa43ece6a9be3d3</originalsourceid><addsrcrecordid>eNqNkEFPwjAYhhujiYj-h908bbbr2m4HD2YggogcIB6b0n1NimPDdkT4927OcPa79Hvb9-nhQSggOCLtPGwjknARppyLKMY4izDmVETHCzQ4P1y2O85omPFUXKMb77e4nSShA7SeVqY8QKUhqE0wgp2qimDdRtcoWzWnoMt57RyUqrF15YO6ClZOGWN1sHRQWN1fd70RaOu7dIuujCo93P2dQ7R-Hq_yl3D-PpnmT_NQJ0kmwgwEAczjDSWsIIIpITYaM5OlmkJSUIW1ZpwYwFSpdJMQY1RCQQNX2QZoQYfovv937-qvA_hG7qzXUJaqgvrgZcqYwHHM4raZ9k3tau8dGLl3dqfcSRIsO5FyKztfsvMlO5HyV6Q8tuhjj37bEk7_5uTbNB-3W8uHPW99A8czr9yn5IIKJj8WEzljkyVdvOZyRn8AZWGJ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855702252</pqid></control><display><type>article</type><title>Influence of Demand Uncertainty and Correlations on Traffic Predictions and Decisions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duthie, Jennifer C. ; Unnikrishnan, Avinash ; Waller, S. Travis</creator><creatorcontrib>Duthie, Jennifer C. ; Unnikrishnan, Avinash ; Waller, S. Travis</creatorcontrib><description>:  Decisions to improve a regional transportation network are often based on predictions of future link flows that assume future travel demand is a deterministic matrix. Despite broad awareness of the uncertainties inherent in forecasts, rarely are uncertainties considered explicitly within the methodological framework due at least in part to a lack of knowledge as to how uncertainties affect the optimality of decisions. This article seeks to address this issue by presenting a new method for evaluating future travel demand uncertainty and finding an efficient technique for generating multiple realizations of demand. The proposed method employs Hypersphere Decomposition, Cholesky Decomposition, and user equilibrium traffic assignment. Numerical results suggest that neglecting correlations between the future demands of travel zone pairs can lead to improvement decisions that are less robust and could frequently rank improvements improperly. Of the six sampling techniques employed, Antithetic sampling generated travel demand realizations with the least relative bias and error.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/j.1467-8667.2009.00637.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Correlation ; Decisions ; Demand ; Infrastructure ; Marketing ; Traffic engineering ; Traffic flow ; Uncertainty</subject><ispartof>Computer-aided civil and infrastructure engineering, 2011-01, Vol.26 (1), p.16-29</ispartof><rights>2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4497-9e71e062b315d175a77bc05f98c3e4d3a0cc561fe03aa8b41ffa43ece6a9be3d3</citedby><cites>FETCH-LOGICAL-c4497-9e71e062b315d175a77bc05f98c3e4d3a0cc561fe03aa8b41ffa43ece6a9be3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8667.2009.00637.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8667.2009.00637.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Duthie, Jennifer C.</creatorcontrib><creatorcontrib>Unnikrishnan, Avinash</creatorcontrib><creatorcontrib>Waller, S. Travis</creatorcontrib><title>Influence of Demand Uncertainty and Correlations on Traffic Predictions and Decisions</title><title>Computer-aided civil and infrastructure engineering</title><description>:  Decisions to improve a regional transportation network are often based on predictions of future link flows that assume future travel demand is a deterministic matrix. Despite broad awareness of the uncertainties inherent in forecasts, rarely are uncertainties considered explicitly within the methodological framework due at least in part to a lack of knowledge as to how uncertainties affect the optimality of decisions. This article seeks to address this issue by presenting a new method for evaluating future travel demand uncertainty and finding an efficient technique for generating multiple realizations of demand. The proposed method employs Hypersphere Decomposition, Cholesky Decomposition, and user equilibrium traffic assignment. Numerical results suggest that neglecting correlations between the future demands of travel zone pairs can lead to improvement decisions that are less robust and could frequently rank improvements improperly. Of the six sampling techniques employed, Antithetic sampling generated travel demand realizations with the least relative bias and error.</description><subject>Correlation</subject><subject>Decisions</subject><subject>Demand</subject><subject>Infrastructure</subject><subject>Marketing</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Uncertainty</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEFPwjAYhhujiYj-h908bbbr2m4HD2YggogcIB6b0n1NimPDdkT4927OcPa79Hvb9-nhQSggOCLtPGwjknARppyLKMY4izDmVETHCzQ4P1y2O85omPFUXKMb77e4nSShA7SeVqY8QKUhqE0wgp2qimDdRtcoWzWnoMt57RyUqrF15YO6ClZOGWN1sHRQWN1fd70RaOu7dIuujCo93P2dQ7R-Hq_yl3D-PpnmT_NQJ0kmwgwEAczjDSWsIIIpITYaM5OlmkJSUIW1ZpwYwFSpdJMQY1RCQQNX2QZoQYfovv937-qvA_hG7qzXUJaqgvrgZcqYwHHM4raZ9k3tau8dGLl3dqfcSRIsO5FyKztfsvMlO5HyV6Q8tuhjj37bEk7_5uTbNB-3W8uHPW99A8czr9yn5IIKJj8WEzljkyVdvOZyRn8AZWGJ4Q</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Duthie, Jennifer C.</creator><creator>Unnikrishnan, Avinash</creator><creator>Waller, S. Travis</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201101</creationdate><title>Influence of Demand Uncertainty and Correlations on Traffic Predictions and Decisions</title><author>Duthie, Jennifer C. ; Unnikrishnan, Avinash ; Waller, S. Travis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4497-9e71e062b315d175a77bc05f98c3e4d3a0cc561fe03aa8b41ffa43ece6a9be3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Correlation</topic><topic>Decisions</topic><topic>Demand</topic><topic>Infrastructure</topic><topic>Marketing</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duthie, Jennifer C.</creatorcontrib><creatorcontrib>Unnikrishnan, Avinash</creatorcontrib><creatorcontrib>Waller, S. Travis</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duthie, Jennifer C.</au><au>Unnikrishnan, Avinash</au><au>Waller, S. Travis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Demand Uncertainty and Correlations on Traffic Predictions and Decisions</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2011-01</date><risdate>2011</risdate><volume>26</volume><issue>1</issue><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>:  Decisions to improve a regional transportation network are often based on predictions of future link flows that assume future travel demand is a deterministic matrix. Despite broad awareness of the uncertainties inherent in forecasts, rarely are uncertainties considered explicitly within the methodological framework due at least in part to a lack of knowledge as to how uncertainties affect the optimality of decisions. This article seeks to address this issue by presenting a new method for evaluating future travel demand uncertainty and finding an efficient technique for generating multiple realizations of demand. The proposed method employs Hypersphere Decomposition, Cholesky Decomposition, and user equilibrium traffic assignment. Numerical results suggest that neglecting correlations between the future demands of travel zone pairs can lead to improvement decisions that are less robust and could frequently rank improvements improperly. Of the six sampling techniques employed, Antithetic sampling generated travel demand realizations with the least relative bias and error.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1467-8667.2009.00637.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2011-01, Vol.26 (1), p.16-29
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_miscellaneous_855702252
source Wiley Online Library Journals Frontfile Complete
subjects Correlation
Decisions
Demand
Infrastructure
Marketing
Traffic engineering
Traffic flow
Uncertainty
title Influence of Demand Uncertainty and Correlations on Traffic Predictions and Decisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Demand%20Uncertainty%20and%20Correlations%20on%20Traffic%20Predictions%20and%20Decisions&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Duthie,%20Jennifer%20C.&rft.date=2011-01&rft.volume=26&rft.issue=1&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/j.1467-8667.2009.00637.x&rft_dat=%3Cproquest_cross%3E855702252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855702252&rft_id=info:pmid/&rfr_iscdi=true