Spatial Econometrics Approach to Integration of Behavioral Biases in Travel Demand Analysis

Random utility models customarily assume strict independence of individual decision makers. Evidence of crowding, peer pressure, herd behavior, and other instances of spontaneous discrete choice coordination indicates that decision makers interact and thus affect choices made by others. Socially inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2010-01, Vol.2157 (1), p.1-10
1. Verfasser: Smirnov, Oleg A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title Transportation research record
container_volume 2157
creator Smirnov, Oleg A.
description Random utility models customarily assume strict independence of individual decision makers. Evidence of crowding, peer pressure, herd behavior, and other instances of spontaneous discrete choice coordination indicates that decision makers interact and thus affect choices made by others. Socially influenced individual choices become biased toward either agreeing with or contradicting the choices made by peers. Because many social interdependencies are spatial, a basic spatial discrete choice model was obtained by extending random utility theory to discrete choices made by heterogeneous spatially dependent individuals. Although interdependencies are unobserved, the model permits the study of behavioral biases arising from spatial interdependencies. The spatial discrete choice model is shown to address the effects of behavioral biases on conditional choice probabilities, the marginal effects of exogenous variables on revealed preferences, and the spatial patterns of discrete choices. A pseudo maximum likelihood (PML) estimator for the model is developed, and closed-form expressions for conditional choice probability estimates are derived. The PML estimator is shown to be consistent and computationally feasible for large spatial data sets. Simulated data were used to illustrate the performance of the PML estimator for the spatial discrete choice model.
doi_str_mv 10.3141/2157-01
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855701577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3141_2157-01</sage_id><sourcerecordid>1777104011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-abc66d99ef58061aecd01b5c024de0d839c6f3ca65e952226a4f0390e2f68a113</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsH7gX5iFoJvom5lkkizbWrVQcGFduQivk5d2SpqJM2mh_96UuhAEV29z3uXew9iNgAclYvEoRZJGIE7YQAqdRzEk8pQNQGkRiTwT5-wihDWAUnGqBuzzvcXOYs0nxjVuQ523JvBh23qHZsU7x6dNR0vfQ67hruIjWuHOOt-_jCwGCtw2fO5xRzV_og02JR82WO-DDVfsrMI60PXPvWQfz5P5-DWavb1Mx8NZZPoOXYQLo3WZ51QlGWiBZEoQi8SAjEuCMlO50ZUyqBPKEymlxrgClQPJSmcohLpkd8fcvvTXlkJXbGwwVNfYkNuGIkuSFHoraU_e_0uKNE0FxPA71HgXgqeqaL3doN8XAoqD6OIguoADeXskAy6pWLut7_eHP9g3UYd6YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777104011</pqid></control><display><type>article</type><title>Spatial Econometrics Approach to Integration of Behavioral Biases in Travel Demand Analysis</title><source>SAGE Journals</source><creator>Smirnov, Oleg A.</creator><creatorcontrib>Smirnov, Oleg A.</creatorcontrib><description>Random utility models customarily assume strict independence of individual decision makers. Evidence of crowding, peer pressure, herd behavior, and other instances of spontaneous discrete choice coordination indicates that decision makers interact and thus affect choices made by others. Socially influenced individual choices become biased toward either agreeing with or contradicting the choices made by peers. Because many social interdependencies are spatial, a basic spatial discrete choice model was obtained by extending random utility theory to discrete choices made by heterogeneous spatially dependent individuals. Although interdependencies are unobserved, the model permits the study of behavioral biases arising from spatial interdependencies. The spatial discrete choice model is shown to address the effects of behavioral biases on conditional choice probabilities, the marginal effects of exogenous variables on revealed preferences, and the spatial patterns of discrete choices. A pseudo maximum likelihood (PML) estimator for the model is developed, and closed-form expressions for conditional choice probability estimates are derived. The PML estimator is shown to be consistent and computationally feasible for large spatial data sets. Simulated data were used to illustrate the performance of the PML estimator for the spatial discrete choice model.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.3141/2157-01</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Decision making ; Econometrics ; Estimators ; Exact solutions ; Mathematical analysis ; Mathematical models ; Transportation ; Utilities</subject><ispartof>Transportation research record, 2010-01, Vol.2157 (1), p.1-10</ispartof><rights>2010 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-abc66d99ef58061aecd01b5c024de0d839c6f3ca65e952226a4f0390e2f68a113</citedby><cites>FETCH-LOGICAL-c347t-abc66d99ef58061aecd01b5c024de0d839c6f3ca65e952226a4f0390e2f68a113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3141/2157-01$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3141/2157-01$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Smirnov, Oleg A.</creatorcontrib><title>Spatial Econometrics Approach to Integration of Behavioral Biases in Travel Demand Analysis</title><title>Transportation research record</title><description>Random utility models customarily assume strict independence of individual decision makers. Evidence of crowding, peer pressure, herd behavior, and other instances of spontaneous discrete choice coordination indicates that decision makers interact and thus affect choices made by others. Socially influenced individual choices become biased toward either agreeing with or contradicting the choices made by peers. Because many social interdependencies are spatial, a basic spatial discrete choice model was obtained by extending random utility theory to discrete choices made by heterogeneous spatially dependent individuals. Although interdependencies are unobserved, the model permits the study of behavioral biases arising from spatial interdependencies. The spatial discrete choice model is shown to address the effects of behavioral biases on conditional choice probabilities, the marginal effects of exogenous variables on revealed preferences, and the spatial patterns of discrete choices. A pseudo maximum likelihood (PML) estimator for the model is developed, and closed-form expressions for conditional choice probability estimates are derived. The PML estimator is shown to be consistent and computationally feasible for large spatial data sets. Simulated data were used to illustrate the performance of the PML estimator for the spatial discrete choice model.</description><subject>Decision making</subject><subject>Econometrics</subject><subject>Estimators</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Transportation</subject><subject>Utilities</subject><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRsH7gX5iFoJvom5lkkizbWrVQcGFduQivk5d2SpqJM2mh_96UuhAEV29z3uXew9iNgAclYvEoRZJGIE7YQAqdRzEk8pQNQGkRiTwT5-wihDWAUnGqBuzzvcXOYs0nxjVuQ523JvBh23qHZsU7x6dNR0vfQ67hruIjWuHOOt-_jCwGCtw2fO5xRzV_og02JR82WO-DDVfsrMI60PXPvWQfz5P5-DWavb1Mx8NZZPoOXYQLo3WZ51QlGWiBZEoQi8SAjEuCMlO50ZUyqBPKEymlxrgClQPJSmcohLpkd8fcvvTXlkJXbGwwVNfYkNuGIkuSFHoraU_e_0uKNE0FxPA71HgXgqeqaL3doN8XAoqD6OIguoADeXskAy6pWLut7_eHP9g3UYd6YA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Smirnov, Oleg A.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>20100101</creationdate><title>Spatial Econometrics Approach to Integration of Behavioral Biases in Travel Demand Analysis</title><author>Smirnov, Oleg A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-abc66d99ef58061aecd01b5c024de0d839c6f3ca65e952226a4f0390e2f68a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Decision making</topic><topic>Econometrics</topic><topic>Estimators</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Transportation</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Oleg A.</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Oleg A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Econometrics Approach to Integration of Behavioral Biases in Travel Demand Analysis</atitle><jtitle>Transportation research record</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2157</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>Random utility models customarily assume strict independence of individual decision makers. Evidence of crowding, peer pressure, herd behavior, and other instances of spontaneous discrete choice coordination indicates that decision makers interact and thus affect choices made by others. Socially influenced individual choices become biased toward either agreeing with or contradicting the choices made by peers. Because many social interdependencies are spatial, a basic spatial discrete choice model was obtained by extending random utility theory to discrete choices made by heterogeneous spatially dependent individuals. Although interdependencies are unobserved, the model permits the study of behavioral biases arising from spatial interdependencies. The spatial discrete choice model is shown to address the effects of behavioral biases on conditional choice probabilities, the marginal effects of exogenous variables on revealed preferences, and the spatial patterns of discrete choices. A pseudo maximum likelihood (PML) estimator for the model is developed, and closed-form expressions for conditional choice probability estimates are derived. The PML estimator is shown to be consistent and computationally feasible for large spatial data sets. Simulated data were used to illustrate the performance of the PML estimator for the spatial discrete choice model.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3141/2157-01</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2010-01, Vol.2157 (1), p.1-10
issn 0361-1981
2169-4052
language eng
recordid cdi_proquest_miscellaneous_855701577
source SAGE Journals
subjects Decision making
Econometrics
Estimators
Exact solutions
Mathematical analysis
Mathematical models
Transportation
Utilities
title Spatial Econometrics Approach to Integration of Behavioral Biases in Travel Demand Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Econometrics%20Approach%20to%20Integration%20of%20Behavioral%20Biases%20in%20Travel%20Demand%20Analysis&rft.jtitle=Transportation%20research%20record&rft.au=Smirnov,%20Oleg%20A.&rft.date=2010-01-01&rft.volume=2157&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.3141/2157-01&rft_dat=%3Cproquest_cross%3E1777104011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777104011&rft_id=info:pmid/&rft_sage_id=10.3141_2157-01&rfr_iscdi=true