Functional behavior of isotropic magnetorheological gels
Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2010-08, Vol.19 (8), p.085019-085019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 085019 |
---|---|
container_issue | 8 |
container_start_page | 085019 |
container_title | Smart materials and structures |
container_volume | 19 |
creator | Venkateswara Rao, P Maniprakash, S Srinivasan, S M Srinivasa, A R |
description | Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1--0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles. |
doi_str_mv | 10.1088/0964-1726/19/8/085019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_855697074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855697074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-b225b1d31e4e49dfad768d1c5a9213fc1b4e6f54eb091d206ed587882ea63aa93</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfQeiL-GJdbtOkyaMMp8LAFwXfQpomW6RratIKfnszN_ai-HQ53N-5fw5Cl4BvAXM-w4KVOVQFm4GYJckpBnGEJkAY5IzRt2M0OTCn6CzGd4wBOIEJ4oux04PznWqz2qzVp_Mh8zZz0Q_B905nG7XqzODD2vjWr5xO4Mq08RydWNVGc7GvU_S6uH-ZP-bL54en-d0y10SQIa-LgtbQEDClKUVjVVMx3oCmShRArIa6NMzS0tRYQFNgZhrKK84LoxhRSpAput7N7YP_GE0c5MZFbdpWdcaPUXJKmahwVSaS7kgdfIzBWNkHt1HhSwKW26DkNgS5DUGCkEn-BJV8V_sNKqbvbFCddvFgLghmrKRV4m52nPP9ofvnSNk3NuH4N_7_Jd_Ep4SZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855697074</pqid></control><display><type>article</type><title>Functional behavior of isotropic magnetorheological gels</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Venkateswara Rao, P ; Maniprakash, S ; Srinivasan, S M ; Srinivasa, A R</creator><creatorcontrib>Venkateswara Rao, P ; Maniprakash, S ; Srinivasan, S M ; Srinivasa, A R</creatorcontrib><description>Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1--0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/0964-1726/19/8/085019</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Applied sciences ; Carbonyls ; Composites ; Dynamic tests ; Dynamics ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Gels ; Iron ; Magnetic fields ; Particulate composites ; Physics ; Polymer industry, paints, wood ; Polymers ; Shear ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Technology of polymers ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Smart materials and structures, 2010-08, Vol.19 (8), p.085019-085019</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-b225b1d31e4e49dfad768d1c5a9213fc1b4e6f54eb091d206ed587882ea63aa93</citedby><cites>FETCH-LOGICAL-c393t-b225b1d31e4e49dfad768d1c5a9213fc1b4e6f54eb091d206ed587882ea63aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0964-1726/19/8/085019/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23066457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkateswara Rao, P</creatorcontrib><creatorcontrib>Maniprakash, S</creatorcontrib><creatorcontrib>Srinivasan, S M</creatorcontrib><creatorcontrib>Srinivasa, A R</creatorcontrib><title>Functional behavior of isotropic magnetorheological gels</title><title>Smart materials and structures</title><description>Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1--0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.</description><subject>Applied sciences</subject><subject>Carbonyls</subject><subject>Composites</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gels</subject><subject>Iron</subject><subject>Magnetic fields</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Shear</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfQeiL-GJdbtOkyaMMp8LAFwXfQpomW6RratIKfnszN_ai-HQ53N-5fw5Cl4BvAXM-w4KVOVQFm4GYJckpBnGEJkAY5IzRt2M0OTCn6CzGd4wBOIEJ4oux04PznWqz2qzVp_Mh8zZz0Q_B905nG7XqzODD2vjWr5xO4Mq08RydWNVGc7GvU_S6uH-ZP-bL54en-d0y10SQIa-LgtbQEDClKUVjVVMx3oCmShRArIa6NMzS0tRYQFNgZhrKK84LoxhRSpAput7N7YP_GE0c5MZFbdpWdcaPUXJKmahwVSaS7kgdfIzBWNkHt1HhSwKW26DkNgS5DUGCkEn-BJV8V_sNKqbvbFCddvFgLghmrKRV4m52nPP9ofvnSNk3NuH4N_7_Jd_Ep4SZ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Venkateswara Rao, P</creator><creator>Maniprakash, S</creator><creator>Srinivasan, S M</creator><creator>Srinivasa, A R</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20100801</creationdate><title>Functional behavior of isotropic magnetorheological gels</title><author>Venkateswara Rao, P ; Maniprakash, S ; Srinivasan, S M ; Srinivasa, A R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-b225b1d31e4e49dfad768d1c5a9213fc1b4e6f54eb091d206ed587882ea63aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carbonyls</topic><topic>Composites</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gels</topic><topic>Iron</topic><topic>Magnetic fields</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Shear</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkateswara Rao, P</creatorcontrib><creatorcontrib>Maniprakash, S</creatorcontrib><creatorcontrib>Srinivasan, S M</creatorcontrib><creatorcontrib>Srinivasa, A R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkateswara Rao, P</au><au>Maniprakash, S</au><au>Srinivasan, S M</au><au>Srinivasa, A R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional behavior of isotropic magnetorheological gels</atitle><jtitle>Smart materials and structures</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>19</volume><issue>8</issue><spage>085019</spage><epage>085019</epage><pages>085019-085019</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><abstract>Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1--0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0964-1726/19/8/085019</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2010-08, Vol.19 (8), p.085019-085019 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_proquest_miscellaneous_855697074 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Applied sciences Carbonyls Composites Dynamic tests Dynamics Exact sciences and technology Forms of application and semi-finished materials Fundamental areas of phenomenology (including applications) Gels Iron Magnetic fields Particulate composites Physics Polymer industry, paints, wood Polymers Shear Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Technology of polymers Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Functional behavior of isotropic magnetorheological gels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T10%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20behavior%20of%20isotropic%20magnetorheological%20gels&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Venkateswara%20Rao,%20P&rft.date=2010-08-01&rft.volume=19&rft.issue=8&rft.spage=085019&rft.epage=085019&rft.pages=085019-085019&rft.issn=0964-1726&rft.eissn=1361-665X&rft_id=info:doi/10.1088/0964-1726/19/8/085019&rft_dat=%3Cproquest_pasca%3E855697074%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855697074&rft_id=info:pmid/&rfr_iscdi=true |