An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis

The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) based on a spectral Tau method. An extension of the operational approach of the Tau method with the orthogonal polynomial bases is proposed to convert FDEs to its matrix–vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2011, Vol.61 (1), p.30-43
Hauptverfasser: Ghoreishi, F., Yazdani, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 30
container_title Computers & mathematics with applications (1987)
container_volume 61
creator Ghoreishi, F.
Yazdani, S.
description The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) based on a spectral Tau method. An extension of the operational approach of the Tau method with the orthogonal polynomial bases is proposed to convert FDEs to its matrix–vector multiplication representation. The fractional derivatives are described in the Caputo sense. The spectral rate of convergence for the proposed method is established in the L 2 norm. We tested our procedure on several examples and observed that the obtained numerical results confirm the theoretical prediction of the exponential rate of convergence.
doi_str_mv 10.1016/j.camwa.2010.10.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855695537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122110008060</els_id><sourcerecordid>855695537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-817cb28f7c9a6f937f57144d773ffef281b786140fbc005162fcb167590b48e03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWy8Y5Vi52VnwaKqeEmV2JS15Thj6iqJW9tp6Sfw1zgta1ajuXPvjOYgdE_JjBJaPm5mSnYHOUvJSZmRlF2gCeUsS1hZ8ks0IbziCU1Teo1uvN8QQvIsJRP0M-8xfAfovbE9thqHNWC_BRWcbPFKDriDsLYN1tbhfujAGRUH3rZD-Et0QxtMYl0DDmsn1ahHS2O0Bgd9MLGB3SBH3eODCWusbL8H9wW9Aiyj-eiNv0VXWrYe7v7qFH2-PK8Wb8ny4_V9MV8mKuMkJJwyVadcM1XJUlcZ0wWjed4wlsV7OuW0ZrykOdG1IqSgZapVTUtWVKTOOZBsih7Oe7fO7gbwQXTGK2hb2YMdvOBFUVZFkbHozM5O5az3DrTYOtNJdxSUiJG72IgTdzFyH8XIPaaezimIT-wNOOGVGT9tjItYRWPNv_lfjVWQBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855695537</pqid></control><display><type>article</type><title>An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ghoreishi, F. ; Yazdani, S.</creator><creatorcontrib>Ghoreishi, F. ; Yazdani, S.</creatorcontrib><description>The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) based on a spectral Tau method. An extension of the operational approach of the Tau method with the orthogonal polynomial bases is proposed to convert FDEs to its matrix–vector multiplication representation. The fractional derivatives are described in the Caputo sense. The spectral rate of convergence for the proposed method is established in the L 2 norm. We tested our procedure on several examples and observed that the obtained numerical results confirm the theoretical prediction of the exponential rate of convergence.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2010.10.027</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Caputo derivative ; Computer simulation ; Convergence ; Derivatives ; Differential equations ; Fractional differential equations ; Mathematical models ; Multiplication ; Norms ; Operational approach to the Tau method ; Representations ; Spectra ; Tau method</subject><ispartof>Computers &amp; mathematics with applications (1987), 2011, Vol.61 (1), p.30-43</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-817cb28f7c9a6f937f57144d773ffef281b786140fbc005162fcb167590b48e03</citedby><cites>FETCH-LOGICAL-c380t-817cb28f7c9a6f937f57144d773ffef281b786140fbc005162fcb167590b48e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122110008060$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ghoreishi, F.</creatorcontrib><creatorcontrib>Yazdani, S.</creatorcontrib><title>An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis</title><title>Computers &amp; mathematics with applications (1987)</title><description>The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) based on a spectral Tau method. An extension of the operational approach of the Tau method with the orthogonal polynomial bases is proposed to convert FDEs to its matrix–vector multiplication representation. The fractional derivatives are described in the Caputo sense. The spectral rate of convergence for the proposed method is established in the L 2 norm. We tested our procedure on several examples and observed that the obtained numerical results confirm the theoretical prediction of the exponential rate of convergence.</description><subject>Caputo derivative</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Fractional differential equations</subject><subject>Mathematical models</subject><subject>Multiplication</subject><subject>Norms</subject><subject>Operational approach to the Tau method</subject><subject>Representations</subject><subject>Spectra</subject><subject>Tau method</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWy8Y5Vi52VnwaKqeEmV2JS15Thj6iqJW9tp6Sfw1zgta1ajuXPvjOYgdE_JjBJaPm5mSnYHOUvJSZmRlF2gCeUsS1hZ8ks0IbziCU1Teo1uvN8QQvIsJRP0M-8xfAfovbE9thqHNWC_BRWcbPFKDriDsLYN1tbhfujAGRUH3rZD-Et0QxtMYl0DDmsn1ahHS2O0Bgd9MLGB3SBH3eODCWusbL8H9wW9Aiyj-eiNv0VXWrYe7v7qFH2-PK8Wb8ny4_V9MV8mKuMkJJwyVadcM1XJUlcZ0wWjed4wlsV7OuW0ZrykOdG1IqSgZapVTUtWVKTOOZBsih7Oe7fO7gbwQXTGK2hb2YMdvOBFUVZFkbHozM5O5az3DrTYOtNJdxSUiJG72IgTdzFyH8XIPaaezimIT-wNOOGVGT9tjItYRWPNv_lfjVWQBQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Ghoreishi, F.</creator><creator>Yazdani, S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis</title><author>Ghoreishi, F. ; Yazdani, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-817cb28f7c9a6f937f57144d773ffef281b786140fbc005162fcb167590b48e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Caputo derivative</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Fractional differential equations</topic><topic>Mathematical models</topic><topic>Multiplication</topic><topic>Norms</topic><topic>Operational approach to the Tau method</topic><topic>Representations</topic><topic>Spectra</topic><topic>Tau method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghoreishi, F.</creatorcontrib><creatorcontrib>Yazdani, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghoreishi, F.</au><au>Yazdani, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2011</date><risdate>2011</risdate><volume>61</volume><issue>1</issue><spage>30</spage><epage>43</epage><pages>30-43</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) based on a spectral Tau method. An extension of the operational approach of the Tau method with the orthogonal polynomial bases is proposed to convert FDEs to its matrix–vector multiplication representation. The fractional derivatives are described in the Caputo sense. The spectral rate of convergence for the proposed method is established in the L 2 norm. We tested our procedure on several examples and observed that the obtained numerical results confirm the theoretical prediction of the exponential rate of convergence.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2010.10.027</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2011, Vol.61 (1), p.30-43
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_855695537
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Caputo derivative
Computer simulation
Convergence
Derivatives
Differential equations
Fractional differential equations
Mathematical models
Multiplication
Norms
Operational approach to the Tau method
Representations
Spectra
Tau method
title An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20of%20the%20spectral%20Tau%20method%20for%20numerical%20solution%20of%20multi-order%20fractional%20differential%20equations%20with%20convergence%20analysis&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Ghoreishi,%20F.&rft.date=2011&rft.volume=61&rft.issue=1&rft.spage=30&rft.epage=43&rft.pages=30-43&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2010.10.027&rft_dat=%3Cproquest_cross%3E855695537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855695537&rft_id=info:pmid/&rft_els_id=S0898122110008060&rfr_iscdi=true