Quantum superposition of distinct macroscopic states
In 1935, Schrödinger 1 attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed 2 , 3 , 4 that, under suitable condi...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2000-07, Vol.406 (6791), p.43-46 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 6791 |
container_start_page | 43 |
container_title | Nature (London) |
container_volume | 406 |
creator | Friedman, Jonathan R. Patel, Vijay Chen, W. Tolpygo, S. K. Lukens, J. E. |
description | In 1935, Schrödinger
1
attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed
2
,
3
,
4
that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors
5
,
6
,
7
,
8
,
9
, nanoscale magnets
10
,
11
,
12
, laser-cooled trapped ions
13
, photons in a microwave cavity
14
and C
60
molecules
15
, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise. |
doi_str_mv | 10.1038/35017505 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_855695424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188081450</galeid><sourcerecordid>A188081450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-dda75e839212d7344928cb7599acf872a9269d98223518ed1d3681271c220fb03</originalsourceid><addsrcrecordid>eNqF0luLEzEUB_Agilur4CeQIuIFmTXXycljKV4WFkVd8TGkmUzJMjOZTTKg396UVrrVdSUPgeSXk-TPQegxwacEM3jDBCZSYHEHzQiXdcVrkHfRDGMKFQZWn6AHKV1ijAWR_D46IRgUF4zNEP88mSFP_SJNo4tjSD77MCxCu2h8yn6wedEbG0OyYfR2kbLJLj1E91rTJfdoP8_Rt3dvL1YfqvNP789Wy_PK1pzkqmmMFA6YooQ2knGuKNi1FEoZ24KkRtFaNQooZYKAa0jDaiBUEkspbteYzdGLXd0xhqvJpax7n6zrOjO4MCUNQtRKcMqLfH6rpLKuQUha4MtbIQGhGIWawv-pFExwuX3-HD39g16GKQ4lG00x5yBBkYKqHdqYzmk_tCFHYzducNF0YXCtL8tLAoCBcIEPRY-8Hf2Vvo5Ob0BlNK739saqr44OFJPdj7wxU0r67OuXY_v633Z58X318Vjv89q2S4qu1WP0vYk_NcF626b6d5sW-mSf17TuXXMN7vqygGd7YJI1XRvNYH06OF6SF-TwmVR2ho2Lh9z_uvMXaHzzPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204487891</pqid></control><display><type>article</type><title>Quantum superposition of distinct macroscopic states</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Friedman, Jonathan R. ; Patel, Vijay ; Chen, W. ; Tolpygo, S. K. ; Lukens, J. E.</creator><creatorcontrib>Friedman, Jonathan R. ; Patel, Vijay ; Chen, W. ; Tolpygo, S. K. ; Lukens, J. E.</creatorcontrib><description>In 1935, Schrödinger
1
attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed
2
,
3
,
4
that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors
5
,
6
,
7
,
8
,
9
, nanoscale magnets
10
,
11
,
12
, laser-cooled trapped ions
13
, photons in a microwave cavity
14
and C
60
molecules
15
, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/35017505</identifier><identifier>PMID: 10894533</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Buckminsterfullerene ; Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Experiments ; Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase) ; Fullerenes ; Humanities and Social Sciences ; letter ; Microwaves ; multidisciplinary ; Nanocomposites ; Nanostructure ; Physics ; Quantum mechanics ; Quantum theory ; Schroedinger equation ; Science ; Science (multidisciplinary) ; SQUIDs ; Superconducting quantum interference devices ; Superconductivity</subject><ispartof>Nature (London), 2000-07, Vol.406 (6791), p.43-46</ispartof><rights>Macmillan Magazines Ltd. 2000</rights><rights>2000 INIST-CNRS</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jul 6, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-dda75e839212d7344928cb7599acf872a9269d98223518ed1d3681271c220fb03</citedby><cites>FETCH-LOGICAL-c641t-dda75e839212d7344928cb7599acf872a9269d98223518ed1d3681271c220fb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/35017505$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/35017505$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1435451$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10894533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedman, Jonathan R.</creatorcontrib><creatorcontrib>Patel, Vijay</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Tolpygo, S. K.</creatorcontrib><creatorcontrib>Lukens, J. E.</creatorcontrib><title>Quantum superposition of distinct macroscopic states</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In 1935, Schrödinger
1
attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed
2
,
3
,
4
that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors
5
,
6
,
7
,
8
,
9
, nanoscale magnets
10
,
11
,
12
, laser-cooled trapped ions
13
, photons in a microwave cavity
14
and C
60
molecules
15
, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise.</description><subject>Buckminsterfullerene</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase)</subject><subject>Fullerenes</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Microwaves</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Schroedinger equation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SQUIDs</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0luLEzEUB_Agilur4CeQIuIFmTXXycljKV4WFkVd8TGkmUzJMjOZTTKg396UVrrVdSUPgeSXk-TPQegxwacEM3jDBCZSYHEHzQiXdcVrkHfRDGMKFQZWn6AHKV1ijAWR_D46IRgUF4zNEP88mSFP_SJNo4tjSD77MCxCu2h8yn6wedEbG0OyYfR2kbLJLj1E91rTJfdoP8_Rt3dvL1YfqvNP789Wy_PK1pzkqmmMFA6YooQ2knGuKNi1FEoZ24KkRtFaNQooZYKAa0jDaiBUEkspbteYzdGLXd0xhqvJpax7n6zrOjO4MCUNQtRKcMqLfH6rpLKuQUha4MtbIQGhGIWawv-pFExwuX3-HD39g16GKQ4lG00x5yBBkYKqHdqYzmk_tCFHYzducNF0YXCtL8tLAoCBcIEPRY-8Hf2Vvo5Ob0BlNK739saqr44OFJPdj7wxU0r67OuXY_v633Z58X318Vjv89q2S4qu1WP0vYk_NcF626b6d5sW-mSf17TuXXMN7vqygGd7YJI1XRvNYH06OF6SF-TwmVR2ho2Lh9z_uvMXaHzzPw</recordid><startdate>20000706</startdate><enddate>20000706</enddate><creator>Friedman, Jonathan R.</creator><creator>Patel, Vijay</creator><creator>Chen, W.</creator><creator>Tolpygo, S. K.</creator><creator>Lukens, J. E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>H8D</scope></search><sort><creationdate>20000706</creationdate><title>Quantum superposition of distinct macroscopic states</title><author>Friedman, Jonathan R. ; Patel, Vijay ; Chen, W. ; Tolpygo, S. K. ; Lukens, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-dda75e839212d7344928cb7599acf872a9269d98223518ed1d3681271c220fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Buckminsterfullerene</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase)</topic><topic>Fullerenes</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Microwaves</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Schroedinger equation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SQUIDs</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Jonathan R.</creatorcontrib><creatorcontrib>Patel, Vijay</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Tolpygo, S. K.</creatorcontrib><creatorcontrib>Lukens, J. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Aerospace Database</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Jonathan R.</au><au>Patel, Vijay</au><au>Chen, W.</au><au>Tolpygo, S. K.</au><au>Lukens, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum superposition of distinct macroscopic states</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2000-07-06</date><risdate>2000</risdate><volume>406</volume><issue>6791</issue><spage>43</spage><epage>46</epage><pages>43-46</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>In 1935, Schrödinger
1
attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed
2
,
3
,
4
that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors
5
,
6
,
7
,
8
,
9
, nanoscale magnets
10
,
11
,
12
, laser-cooled trapped ions
13
, photons in a microwave cavity
14
and C
60
molecules
15
, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>10894533</pmid><doi>10.1038/35017505</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2000-07, Vol.406 (6791), p.43-46 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_855695424 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Buckminsterfullerene Classical and quantum physics: mechanics and fields Exact sciences and technology Experiments Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase) Fullerenes Humanities and Social Sciences letter Microwaves multidisciplinary Nanocomposites Nanostructure Physics Quantum mechanics Quantum theory Schroedinger equation Science Science (multidisciplinary) SQUIDs Superconducting quantum interference devices Superconductivity |
title | Quantum superposition of distinct macroscopic states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20superposition%20of%20distinct%20macroscopic%20states&rft.jtitle=Nature%20(London)&rft.au=Friedman,%20Jonathan%20R.&rft.date=2000-07-06&rft.volume=406&rft.issue=6791&rft.spage=43&rft.epage=46&rft.pages=43-46&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/35017505&rft_dat=%3Cgale_proqu%3EA188081450%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204487891&rft_id=info:pmid/10894533&rft_galeid=A188081450&rfr_iscdi=true |