Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors
Magnetoresistance-the field-dependent change in the electrical resistance of a ferromagnetic material-finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuatio...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1998-10, Vol.395 (6701), p.479-481 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 6701 |
container_start_page | 479 |
container_title | Nature (London) |
container_volume | 395 |
creator | Littlewood, Peter B Majumdar, Pinaki |
description | Magnetoresistance-the field-dependent change in the electrical resistance of a ferromagnetic material-finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuations can substantially increase the electrical resistance,. These fluctuations can be suppressed by a magnetic field, leading to a negative magnetoresistance. Magnetic scattering might also have a role in the 'colossal' magnetoresistance observed in some perovskite manganese oxides, but is it not yet clear how to reconcile this behaviour with that of the conventional ferromagnetic materials. Here we show that, in generic models of magnetic scattering, the bulk low-field magnetoresistance (near and above T c) is determined by a single parameter: the charge-carrier density. In agreement with experiment,,, the low-field magnetoresistance scales with the square of the ratio of the field-induced magnetization to the saturation magnetization. The scaling factor is C x −2/3, where x is the number of charge carriers per magnetic unit cell. Data from very different ferromagnetic metals and doped semiconductors are in broad quantitative agreement with this relationship, with the notable exception of the perovskite manganese oxides (in which dynamic lattice distortions complicate and enhance, the effects of pure magnetic scattering). Our results might facilitate searches for new materials with large bulk magnetoresistive properties. |
doi_str_mv | 10.1038/26703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855695167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753554176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2e73dbcb19b9df0c6de5a97528038b1029518fdb57612f6208077a460fe6ce43</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoNskv6AXUfp1cSvJ-rCPJf0KBHLJ3cjSaKtgS1uNHci_rza7NCWHnObwPvMML0PIOWefOWu7L0Ib1r4gGy6NbqTuzEuyYUx0Deta_Yq8RrxljClu5Ias32AHyUNyQHOgs90mWHIBjLjEu7jc05yo-23LFhpnS4lQaKVxn8REZ1jsNEVHA5SSD9tIbfLU5x34o6_mCHN0OfnVVTuekZNgJ4Tz4zwlNz--31z8aq6uf15efL1qnBRiaQSY1o9u5P3Y-8Cc9qBsb5Toas2RM9Er3gU_KqO5CFqwjhljpWYBtAPZnpKPB-2u5D8r4DLMER1Mk02QVxw6pXRVaFPJD8-Swshe8L6v4KdnQW5Uq5TkRlf07RP0Nq8l1b6DYFIaZvQeen-AXMmIBcKwK3G25X7gbNh_c3j4ZuXeHWUWnZ1CsclF_AcLKYw2__XAmqQtlMebT31vDmCyy1rgUfSQ_gUPd7Qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204470766</pqid></control><display><type>article</type><title>Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Littlewood, Peter B ; Majumdar, Pinaki</creator><creatorcontrib>Littlewood, Peter B ; Majumdar, Pinaki</creatorcontrib><description>Magnetoresistance-the field-dependent change in the electrical resistance of a ferromagnetic material-finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuations can substantially increase the electrical resistance,. These fluctuations can be suppressed by a magnetic field, leading to a negative magnetoresistance. Magnetic scattering might also have a role in the 'colossal' magnetoresistance observed in some perovskite manganese oxides, but is it not yet clear how to reconcile this behaviour with that of the conventional ferromagnetic materials. Here we show that, in generic models of magnetic scattering, the bulk low-field magnetoresistance (near and above T c) is determined by a single parameter: the charge-carrier density. In agreement with experiment,,, the low-field magnetoresistance scales with the square of the ratio of the field-induced magnetization to the saturation magnetization. The scaling factor is C x −2/3, where x is the number of charge carriers per magnetic unit cell. Data from very different ferromagnetic metals and doped semiconductors are in broad quantitative agreement with this relationship, with the notable exception of the perovskite manganese oxides (in which dynamic lattice distortions complicate and enhance, the effects of pure magnetic scattering). Our results might facilitate searches for new materials with large bulk magnetoresistive properties.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/26703</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductivity phenomena in semiconductors and insulators ; Density ; Dispersion (wave) ; Electronic transport in condensed matter ; Exact sciences and technology ; Ferromagnetism ; Fluctuation ; Galvanomagnetic and other magnetotransport effects ; Humanities and Social Sciences ; letter ; Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) ; Magnetic properties and materials ; Magnetic semiconductors ; Magnetically ordered materials: other intrinsic properties ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Materials science ; multidisciplinary ; Nonmetallic ferromagnetic materials ; Perovskites ; Physics ; Science ; Science (multidisciplinary) ; Semiconductors ; Studies of specific magnetic materials</subject><ispartof>Nature (London), 1998-10, Vol.395 (6701), p.479-481</ispartof><rights>Macmillan Magazines Ltd. 1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Oct 1, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2e73dbcb19b9df0c6de5a97528038b1029518fdb57612f6208077a460fe6ce43</citedby><cites>FETCH-LOGICAL-c422t-2e73dbcb19b9df0c6de5a97528038b1029518fdb57612f6208077a460fe6ce43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/26703$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/26703$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2427677$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Littlewood, Peter B</creatorcontrib><creatorcontrib>Majumdar, Pinaki</creatorcontrib><title>Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Magnetoresistance-the field-dependent change in the electrical resistance of a ferromagnetic material-finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuations can substantially increase the electrical resistance,. These fluctuations can be suppressed by a magnetic field, leading to a negative magnetoresistance. Magnetic scattering might also have a role in the 'colossal' magnetoresistance observed in some perovskite manganese oxides, but is it not yet clear how to reconcile this behaviour with that of the conventional ferromagnetic materials. Here we show that, in generic models of magnetic scattering, the bulk low-field magnetoresistance (near and above T c) is determined by a single parameter: the charge-carrier density. In agreement with experiment,,, the low-field magnetoresistance scales with the square of the ratio of the field-induced magnetization to the saturation magnetization. The scaling factor is C x −2/3, where x is the number of charge carriers per magnetic unit cell. Data from very different ferromagnetic metals and doped semiconductors are in broad quantitative agreement with this relationship, with the notable exception of the perovskite manganese oxides (in which dynamic lattice distortions complicate and enhance, the effects of pure magnetic scattering). Our results might facilitate searches for new materials with large bulk magnetoresistive properties.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Density</subject><subject>Dispersion (wave)</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Fluctuation</subject><subject>Galvanomagnetic and other magnetotransport effects</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</subject><subject>Magnetic properties and materials</subject><subject>Magnetic semiconductors</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Materials science</subject><subject>multidisciplinary</subject><subject>Nonmetallic ferromagnetic materials</subject><subject>Perovskites</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Studies of specific magnetic materials</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1r3DAQhkVpoNskv6AXUfp1cSvJ-rCPJf0KBHLJ3cjSaKtgS1uNHci_rza7NCWHnObwPvMML0PIOWefOWu7L0Ib1r4gGy6NbqTuzEuyYUx0Deta_Yq8RrxljClu5Ias32AHyUNyQHOgs90mWHIBjLjEu7jc05yo-23LFhpnS4lQaKVxn8REZ1jsNEVHA5SSD9tIbfLU5x34o6_mCHN0OfnVVTuekZNgJ4Tz4zwlNz--31z8aq6uf15efL1qnBRiaQSY1o9u5P3Y-8Cc9qBsb5Toas2RM9Er3gU_KqO5CFqwjhljpWYBtAPZnpKPB-2u5D8r4DLMER1Mk02QVxw6pXRVaFPJD8-Swshe8L6v4KdnQW5Uq5TkRlf07RP0Nq8l1b6DYFIaZvQeen-AXMmIBcKwK3G25X7gbNh_c3j4ZuXeHWUWnZ1CsclF_AcLKYw2__XAmqQtlMebT31vDmCyy1rgUfSQ_gUPd7Qu</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Littlewood, Peter B</creator><creator>Majumdar, Pinaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19981001</creationdate><title>Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors</title><author>Littlewood, Peter B ; Majumdar, Pinaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2e73dbcb19b9df0c6de5a97528038b1029518fdb57612f6208077a460fe6ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Density</topic><topic>Dispersion (wave)</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Fluctuation</topic><topic>Galvanomagnetic and other magnetotransport effects</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</topic><topic>Magnetic properties and materials</topic><topic>Magnetic semiconductors</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Materials science</topic><topic>multidisciplinary</topic><topic>Nonmetallic ferromagnetic materials</topic><topic>Perovskites</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Studies of specific magnetic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Littlewood, Peter B</creatorcontrib><creatorcontrib>Majumdar, Pinaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Littlewood, Peter B</au><au>Majumdar, Pinaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>395</volume><issue>6701</issue><spage>479</spage><epage>481</epage><pages>479-481</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Magnetoresistance-the field-dependent change in the electrical resistance of a ferromagnetic material-finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuations can substantially increase the electrical resistance,. These fluctuations can be suppressed by a magnetic field, leading to a negative magnetoresistance. Magnetic scattering might also have a role in the 'colossal' magnetoresistance observed in some perovskite manganese oxides, but is it not yet clear how to reconcile this behaviour with that of the conventional ferromagnetic materials. Here we show that, in generic models of magnetic scattering, the bulk low-field magnetoresistance (near and above T c) is determined by a single parameter: the charge-carrier density. In agreement with experiment,,, the low-field magnetoresistance scales with the square of the ratio of the field-induced magnetization to the saturation magnetization. The scaling factor is C x −2/3, where x is the number of charge carriers per magnetic unit cell. Data from very different ferromagnetic metals and doped semiconductors are in broad quantitative agreement with this relationship, with the notable exception of the perovskite manganese oxides (in which dynamic lattice distortions complicate and enhance, the effects of pure magnetic scattering). Our results might facilitate searches for new materials with large bulk magnetoresistive properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/26703</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1998-10, Vol.395 (6701), p.479-481 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_855695167 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Conductivity phenomena in semiconductors and insulators Density Dispersion (wave) Electronic transport in condensed matter Exact sciences and technology Ferromagnetism Fluctuation Galvanomagnetic and other magnetotransport effects Humanities and Social Sciences letter Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) Magnetic properties and materials Magnetic semiconductors Magnetically ordered materials: other intrinsic properties Magnetism Magnetoresistance Magnetoresistivity Materials science multidisciplinary Nonmetallic ferromagnetic materials Perovskites Physics Science Science (multidisciplinary) Semiconductors Studies of specific magnetic materials |
title | Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20magnetoresistivity%20on%20charge-carrier%20density%20in%20metallic%20ferromagnets%20and%20doped%20magnetic%20semiconductors&rft.jtitle=Nature%20(London)&rft.au=Littlewood,%20Peter%20B&rft.date=1998-10-01&rft.volume=395&rft.issue=6701&rft.spage=479&rft.epage=481&rft.pages=479-481&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/26703&rft_dat=%3Cproquest_cross%3E1753554176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204470766&rft_id=info:pmid/&rfr_iscdi=true |