The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells

Abstract Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-01, Vol.32 (1), p.10-18
Hauptverfasser: Achneck, Hardean E, Jamiolkowski, Ryan M, Jantzen, Alexandra E, Haseltine, Justin M, Lane, Whitney O, Huang, Jessica K, Galinat, Lauren J, Serpe, Michael J, Lin, Fu-Hsiung, Li, Madison, Parikh, Amar, Ma, Liqiao, Chen, Tao, Sileshi, Bantayehu, Milano, Carmelo A, Wallace, Charles S, Stabler, Thomas V, Allen, Jason D, Truskey, George A, Lawson, Jeffrey H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 10
container_title Biomaterials
container_volume 32
creator Achneck, Hardean E
Jamiolkowski, Ryan M
Jantzen, Alexandra E
Haseltine, Justin M
Lane, Whitney O
Huang, Jessica K
Galinat, Lauren J
Serpe, Michael J
Lin, Fu-Hsiung
Li, Madison
Parikh, Amar
Ma, Liqiao
Chen, Tao
Sileshi, Bantayehu
Milano, Carmelo A
Wallace, Charles S
Stabler, Thomas V
Allen, Jason D
Truskey, George A
Lawson, Jeffrey H
description Abstract Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm2 . Confluent monolayers of EPCs on smooth Ti surfaces ( Rq of 10 nm), exposed to 15 or 100 dyne / cm2 for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation.
doi_str_mv 10.1016/j.biomaterials.2010.08.073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855694388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210011117</els_id><sourcerecordid>855694388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3083-7dc61a1dd0ff0662539e168d733ed40db4585c8ebba207a97933da8f629ef7563</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1EJZbCf7B64ZStHSeOwwEJFShIlXpoe7Yce9KdrRMvtrNo_z2OlgPihC-WNfOePr9HyBVnW864vN5vBwyTyRDR-LStWRkwtWWdeEU2XHWqanvWviYbxpu66iWv35C3Ke1ZebOm3pDT4w5o8bBhOpiMA3rMJxpGmjGbGZeJWhMdhqNJdvEmUgdHtJBoAnDg6C_MO2qWHHx4Dkuigw_BVa7wHMsUZhfyDnyBo4cYnmHGHCK14H16Ry7Gwgzv_9yX5Onb18eb79Xd_e2Pm893lRVMiapzVnLDnWPjyKSsW9EDl8p1QoBrmBuaVrVWwTCYmnWm73ohnFGjrHsYu1aKS_Lh7FsAfi6Qsp4wrQRmhkKsVdvKvhFKlc2P500bQ0oRRn2IOJl40pzpNW6913_Hrde4NVO6xF3EX85iKH85IkSdLMJswWEEm7UL-H82n_6xsR5ntMa_wAnSPixxXjVcp1oz_bD2utbKS6PldOI3YcWodQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855694388</pqid></control><display><type>article</type><title>The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Achneck, Hardean E ; Jamiolkowski, Ryan M ; Jantzen, Alexandra E ; Haseltine, Justin M ; Lane, Whitney O ; Huang, Jessica K ; Galinat, Lauren J ; Serpe, Michael J ; Lin, Fu-Hsiung ; Li, Madison ; Parikh, Amar ; Ma, Liqiao ; Chen, Tao ; Sileshi, Bantayehu ; Milano, Carmelo A ; Wallace, Charles S ; Stabler, Thomas V ; Allen, Jason D ; Truskey, George A ; Lawson, Jeffrey H</creator><creatorcontrib>Achneck, Hardean E ; Jamiolkowski, Ryan M ; Jantzen, Alexandra E ; Haseltine, Justin M ; Lane, Whitney O ; Huang, Jessica K ; Galinat, Lauren J ; Serpe, Michael J ; Lin, Fu-Hsiung ; Li, Madison ; Parikh, Amar ; Ma, Liqiao ; Chen, Tao ; Sileshi, Bantayehu ; Milano, Carmelo A ; Wallace, Charles S ; Stabler, Thomas V ; Allen, Jason D ; Truskey, George A ; Lawson, Jeffrey H</creatorcontrib><description>Abstract Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm2 . Confluent monolayers of EPCs on smooth Ti surfaces ( Rq of 10 nm), exposed to 15 or 100 dyne / cm2 for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.08.073</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biocompatibility ; Cell adhesion ; Dentistry ; Endothelialisation ; Progenitor cell ; Thrombogenicity ; Titanium</subject><ispartof>Biomaterials, 2011-01, Vol.32 (1), p.10-18</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3083-7dc61a1dd0ff0662539e168d733ed40db4585c8ebba207a97933da8f629ef7563</citedby><cites>FETCH-LOGICAL-c3083-7dc61a1dd0ff0662539e168d733ed40db4585c8ebba207a97933da8f629ef7563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.08.073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Achneck, Hardean E</creatorcontrib><creatorcontrib>Jamiolkowski, Ryan M</creatorcontrib><creatorcontrib>Jantzen, Alexandra E</creatorcontrib><creatorcontrib>Haseltine, Justin M</creatorcontrib><creatorcontrib>Lane, Whitney O</creatorcontrib><creatorcontrib>Huang, Jessica K</creatorcontrib><creatorcontrib>Galinat, Lauren J</creatorcontrib><creatorcontrib>Serpe, Michael J</creatorcontrib><creatorcontrib>Lin, Fu-Hsiung</creatorcontrib><creatorcontrib>Li, Madison</creatorcontrib><creatorcontrib>Parikh, Amar</creatorcontrib><creatorcontrib>Ma, Liqiao</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Sileshi, Bantayehu</creatorcontrib><creatorcontrib>Milano, Carmelo A</creatorcontrib><creatorcontrib>Wallace, Charles S</creatorcontrib><creatorcontrib>Stabler, Thomas V</creatorcontrib><creatorcontrib>Allen, Jason D</creatorcontrib><creatorcontrib>Truskey, George A</creatorcontrib><creatorcontrib>Lawson, Jeffrey H</creatorcontrib><title>The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells</title><title>Biomaterials</title><description>Abstract Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm2 . Confluent monolayers of EPCs on smooth Ti surfaces ( Rq of 10 nm), exposed to 15 or 100 dyne / cm2 for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation.</description><subject>Advanced Basic Science</subject><subject>Biocompatibility</subject><subject>Cell adhesion</subject><subject>Dentistry</subject><subject>Endothelialisation</subject><subject>Progenitor cell</subject><subject>Thrombogenicity</subject><subject>Titanium</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS1EJZbCf7B64ZStHSeOwwEJFShIlXpoe7Yce9KdrRMvtrNo_z2OlgPihC-WNfOePr9HyBVnW864vN5vBwyTyRDR-LStWRkwtWWdeEU2XHWqanvWviYbxpu66iWv35C3Ke1ZebOm3pDT4w5o8bBhOpiMA3rMJxpGmjGbGZeJWhMdhqNJdvEmUgdHtJBoAnDg6C_MO2qWHHx4Dkuigw_BVa7wHMsUZhfyDnyBo4cYnmHGHCK14H16Ry7Gwgzv_9yX5Onb18eb79Xd_e2Pm893lRVMiapzVnLDnWPjyKSsW9EDl8p1QoBrmBuaVrVWwTCYmnWm73ohnFGjrHsYu1aKS_Lh7FsAfi6Qsp4wrQRmhkKsVdvKvhFKlc2P500bQ0oRRn2IOJl40pzpNW6913_Hrde4NVO6xF3EX85iKH85IkSdLMJswWEEm7UL-H82n_6xsR5ntMa_wAnSPixxXjVcp1oz_bD2utbKS6PldOI3YcWodQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Achneck, Hardean E</creator><creator>Jamiolkowski, Ryan M</creator><creator>Jantzen, Alexandra E</creator><creator>Haseltine, Justin M</creator><creator>Lane, Whitney O</creator><creator>Huang, Jessica K</creator><creator>Galinat, Lauren J</creator><creator>Serpe, Michael J</creator><creator>Lin, Fu-Hsiung</creator><creator>Li, Madison</creator><creator>Parikh, Amar</creator><creator>Ma, Liqiao</creator><creator>Chen, Tao</creator><creator>Sileshi, Bantayehu</creator><creator>Milano, Carmelo A</creator><creator>Wallace, Charles S</creator><creator>Stabler, Thomas V</creator><creator>Allen, Jason D</creator><creator>Truskey, George A</creator><creator>Lawson, Jeffrey H</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110101</creationdate><title>The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells</title><author>Achneck, Hardean E ; Jamiolkowski, Ryan M ; Jantzen, Alexandra E ; Haseltine, Justin M ; Lane, Whitney O ; Huang, Jessica K ; Galinat, Lauren J ; Serpe, Michael J ; Lin, Fu-Hsiung ; Li, Madison ; Parikh, Amar ; Ma, Liqiao ; Chen, Tao ; Sileshi, Bantayehu ; Milano, Carmelo A ; Wallace, Charles S ; Stabler, Thomas V ; Allen, Jason D ; Truskey, George A ; Lawson, Jeffrey H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3083-7dc61a1dd0ff0662539e168d733ed40db4585c8ebba207a97933da8f629ef7563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Biocompatibility</topic><topic>Cell adhesion</topic><topic>Dentistry</topic><topic>Endothelialisation</topic><topic>Progenitor cell</topic><topic>Thrombogenicity</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achneck, Hardean E</creatorcontrib><creatorcontrib>Jamiolkowski, Ryan M</creatorcontrib><creatorcontrib>Jantzen, Alexandra E</creatorcontrib><creatorcontrib>Haseltine, Justin M</creatorcontrib><creatorcontrib>Lane, Whitney O</creatorcontrib><creatorcontrib>Huang, Jessica K</creatorcontrib><creatorcontrib>Galinat, Lauren J</creatorcontrib><creatorcontrib>Serpe, Michael J</creatorcontrib><creatorcontrib>Lin, Fu-Hsiung</creatorcontrib><creatorcontrib>Li, Madison</creatorcontrib><creatorcontrib>Parikh, Amar</creatorcontrib><creatorcontrib>Ma, Liqiao</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Sileshi, Bantayehu</creatorcontrib><creatorcontrib>Milano, Carmelo A</creatorcontrib><creatorcontrib>Wallace, Charles S</creatorcontrib><creatorcontrib>Stabler, Thomas V</creatorcontrib><creatorcontrib>Allen, Jason D</creatorcontrib><creatorcontrib>Truskey, George A</creatorcontrib><creatorcontrib>Lawson, Jeffrey H</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achneck, Hardean E</au><au>Jamiolkowski, Ryan M</au><au>Jantzen, Alexandra E</au><au>Haseltine, Justin M</au><au>Lane, Whitney O</au><au>Huang, Jessica K</au><au>Galinat, Lauren J</au><au>Serpe, Michael J</au><au>Lin, Fu-Hsiung</au><au>Li, Madison</au><au>Parikh, Amar</au><au>Ma, Liqiao</au><au>Chen, Tao</au><au>Sileshi, Bantayehu</au><au>Milano, Carmelo A</au><au>Wallace, Charles S</au><au>Stabler, Thomas V</au><au>Allen, Jason D</au><au>Truskey, George A</au><au>Lawson, Jeffrey H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells</atitle><jtitle>Biomaterials</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>1</issue><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm2 . Confluent monolayers of EPCs on smooth Ti surfaces ( Rq of 10 nm), exposed to 15 or 100 dyne / cm2 for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.biomaterials.2010.08.073</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-01, Vol.32 (1), p.10-18
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_855694388
source Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Biocompatibility
Cell adhesion
Dentistry
Endothelialisation
Progenitor cell
Thrombogenicity
Titanium
title The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20biocompatibility%20of%20titanium%20cardiovascular%20devices%20seeded%20with%20autologous%20blood-derived%20endothelial%20progenitor%20cells&rft.jtitle=Biomaterials&rft.au=Achneck,%20Hardean%20E&rft.date=2011-01-01&rft.volume=32&rft.issue=1&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.08.073&rft_dat=%3Cproquest_cross%3E855694388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855694388&rft_id=info:pmid/&rft_els_id=S0142961210011117&rfr_iscdi=true