A spin foam model for general Lorentzian 4-geometries
We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with t...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2010-09, Vol.27 (18), p.185011-185011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185011 |
---|---|
container_issue | 18 |
container_start_page | 185011 |
container_title | Classical and quantum gravity |
container_volume | 27 |
creator | Conrady, Florian Hnybida, Jeff |
description | We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries. |
doi_str_mv | 10.1088/0264-9381/27/18/185011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_855693740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855693740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</originalsourceid><addsrcrecordid>eNqFkE1rwzAMhs3YYN3HXxi5jJ2yWrFjK8dS9gWFXbazcRKlZCRxZqeH7dfPJaWXDYYEEujRK_EydgP8HjjikmdKpoVAWGZ6CRgz5wAnbAFCQaoEZqdscYTO2UUIHzwSCNmC5askjO2QNM72Se9q6mLrky0N5G2XbJynYfpu7ZDIdEuup8m3FK7YWWO7QNeHesneHx_e1s_p5vXpZb3apJUo9JTaXNayQNsUoHLMUAIUqHVFvLQaEAFKTVJJoTmXhZa1EBIqXpJWJWqy4pLdzbqjd587CpPp21BR19mB3C4YzHNVCC15JNVMVt6F4Kkxo297678McLO3yewdMHsHTKYNoJltiou3hxM2VLZrvB2qNhy3MxFDKxW5dOZaNx6nf2uasW4iD7_5f375AbGugQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855693740</pqid></control><display><type>article</type><title>A spin foam model for general Lorentzian 4-geometries</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Conrady, Florian ; Hnybida, Jeff</creator><creatorcontrib>Conrady, Florian ; Hnybida, Jeff</creatorcontrib><description>We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/27/18/185011</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coherence ; Exact sciences and technology ; Foams ; General relativity and gravitation ; Mathematical models ; Optimization ; Physics ; Quantum gravity ; Triangles ; Triangulation ; Uncertainty</subject><ispartof>Classical and quantum gravity, 2010-09, Vol.27 (18), p.185011-185011</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</citedby><cites>FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/27/18/185011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23232766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Conrady, Florian</creatorcontrib><creatorcontrib>Hnybida, Jeff</creatorcontrib><title>A spin foam model for general Lorentzian 4-geometries</title><title>Classical and quantum gravity</title><description>We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.</description><subject>Coherence</subject><subject>Exact sciences and technology</subject><subject>Foams</subject><subject>General relativity and gravitation</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physics</subject><subject>Quantum gravity</subject><subject>Triangles</subject><subject>Triangulation</subject><subject>Uncertainty</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rwzAMhs3YYN3HXxi5jJ2yWrFjK8dS9gWFXbazcRKlZCRxZqeH7dfPJaWXDYYEEujRK_EydgP8HjjikmdKpoVAWGZ6CRgz5wAnbAFCQaoEZqdscYTO2UUIHzwSCNmC5askjO2QNM72Se9q6mLrky0N5G2XbJynYfpu7ZDIdEuup8m3FK7YWWO7QNeHesneHx_e1s_p5vXpZb3apJUo9JTaXNayQNsUoHLMUAIUqHVFvLQaEAFKTVJJoTmXhZa1EBIqXpJWJWqy4pLdzbqjd587CpPp21BR19mB3C4YzHNVCC15JNVMVt6F4Kkxo297678McLO3yewdMHsHTKYNoJltiou3hxM2VLZrvB2qNhy3MxFDKxW5dOZaNx6nf2uasW4iD7_5f375AbGugQs</recordid><startdate>20100921</startdate><enddate>20100921</enddate><creator>Conrady, Florian</creator><creator>Hnybida, Jeff</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100921</creationdate><title>A spin foam model for general Lorentzian 4-geometries</title><author>Conrady, Florian ; Hnybida, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coherence</topic><topic>Exact sciences and technology</topic><topic>Foams</topic><topic>General relativity and gravitation</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physics</topic><topic>Quantum gravity</topic><topic>Triangles</topic><topic>Triangulation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conrady, Florian</creatorcontrib><creatorcontrib>Hnybida, Jeff</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conrady, Florian</au><au>Hnybida, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spin foam model for general Lorentzian 4-geometries</atitle><jtitle>Classical and quantum gravity</jtitle><date>2010-09-21</date><risdate>2010</risdate><volume>27</volume><issue>18</issue><spage>185011</spage><epage>185011</epage><pages>185011-185011</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/27/18/185011</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2010-09, Vol.27 (18), p.185011-185011 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_proquest_miscellaneous_855693740 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Coherence Exact sciences and technology Foams General relativity and gravitation Mathematical models Optimization Physics Quantum gravity Triangles Triangulation Uncertainty |
title | A spin foam model for general Lorentzian 4-geometries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spin%20foam%20model%20for%20general%20Lorentzian%204-geometries&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Conrady,%20Florian&rft.date=2010-09-21&rft.volume=27&rft.issue=18&rft.spage=185011&rft.epage=185011&rft.pages=185011-185011&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/27/18/185011&rft_dat=%3Cproquest_pasca%3E855693740%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855693740&rft_id=info:pmid/&rfr_iscdi=true |