A spin foam model for general Lorentzian 4-geometries

We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2010-09, Vol.27 (18), p.185011-185011
Hauptverfasser: Conrady, Florian, Hnybida, Jeff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185011
container_issue 18
container_start_page 185011
container_title Classical and quantum gravity
container_volume 27
creator Conrady, Florian
Hnybida, Jeff
description We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.
doi_str_mv 10.1088/0264-9381/27/18/185011
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_855693740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855693740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</originalsourceid><addsrcrecordid>eNqFkE1rwzAMhs3YYN3HXxi5jJ2yWrFjK8dS9gWFXbazcRKlZCRxZqeH7dfPJaWXDYYEEujRK_EydgP8HjjikmdKpoVAWGZ6CRgz5wAnbAFCQaoEZqdscYTO2UUIHzwSCNmC5askjO2QNM72Se9q6mLrky0N5G2XbJynYfpu7ZDIdEuup8m3FK7YWWO7QNeHesneHx_e1s_p5vXpZb3apJUo9JTaXNayQNsUoHLMUAIUqHVFvLQaEAFKTVJJoTmXhZa1EBIqXpJWJWqy4pLdzbqjd587CpPp21BR19mB3C4YzHNVCC15JNVMVt6F4Kkxo297678McLO3yewdMHsHTKYNoJltiou3hxM2VLZrvB2qNhy3MxFDKxW5dOZaNx6nf2uasW4iD7_5f375AbGugQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855693740</pqid></control><display><type>article</type><title>A spin foam model for general Lorentzian 4-geometries</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Conrady, Florian ; Hnybida, Jeff</creator><creatorcontrib>Conrady, Florian ; Hnybida, Jeff</creatorcontrib><description>We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/27/18/185011</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coherence ; Exact sciences and technology ; Foams ; General relativity and gravitation ; Mathematical models ; Optimization ; Physics ; Quantum gravity ; Triangles ; Triangulation ; Uncertainty</subject><ispartof>Classical and quantum gravity, 2010-09, Vol.27 (18), p.185011-185011</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</citedby><cites>FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/27/18/185011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23232766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Conrady, Florian</creatorcontrib><creatorcontrib>Hnybida, Jeff</creatorcontrib><title>A spin foam model for general Lorentzian 4-geometries</title><title>Classical and quantum gravity</title><description>We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.</description><subject>Coherence</subject><subject>Exact sciences and technology</subject><subject>Foams</subject><subject>General relativity and gravitation</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physics</subject><subject>Quantum gravity</subject><subject>Triangles</subject><subject>Triangulation</subject><subject>Uncertainty</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rwzAMhs3YYN3HXxi5jJ2yWrFjK8dS9gWFXbazcRKlZCRxZqeH7dfPJaWXDYYEEujRK_EydgP8HjjikmdKpoVAWGZ6CRgz5wAnbAFCQaoEZqdscYTO2UUIHzwSCNmC5askjO2QNM72Se9q6mLrky0N5G2XbJynYfpu7ZDIdEuup8m3FK7YWWO7QNeHesneHx_e1s_p5vXpZb3apJUo9JTaXNayQNsUoHLMUAIUqHVFvLQaEAFKTVJJoTmXhZa1EBIqXpJWJWqy4pLdzbqjd587CpPp21BR19mB3C4YzHNVCC15JNVMVt6F4Kkxo297678McLO3yewdMHsHTKYNoJltiou3hxM2VLZrvB2qNhy3MxFDKxW5dOZaNx6nf2uasW4iD7_5f375AbGugQs</recordid><startdate>20100921</startdate><enddate>20100921</enddate><creator>Conrady, Florian</creator><creator>Hnybida, Jeff</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100921</creationdate><title>A spin foam model for general Lorentzian 4-geometries</title><author>Conrady, Florian ; Hnybida, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a54d498af91658284119877ce0ba718811b7e46437004974d3341c0be76b87ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coherence</topic><topic>Exact sciences and technology</topic><topic>Foams</topic><topic>General relativity and gravitation</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physics</topic><topic>Quantum gravity</topic><topic>Triangles</topic><topic>Triangulation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conrady, Florian</creatorcontrib><creatorcontrib>Hnybida, Jeff</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conrady, Florian</au><au>Hnybida, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spin foam model for general Lorentzian 4-geometries</atitle><jtitle>Classical and quantum gravity</jtitle><date>2010-09-21</date><risdate>2010</risdate><volume>27</volume><issue>18</issue><spage>185011</spage><epage>185011</epage><pages>185011-185011</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/27/18/185011</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2010-09, Vol.27 (18), p.185011-185011
issn 0264-9381
1361-6382
language eng
recordid cdi_proquest_miscellaneous_855693740
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Coherence
Exact sciences and technology
Foams
General relativity and gravitation
Mathematical models
Optimization
Physics
Quantum gravity
Triangles
Triangulation
Uncertainty
title A spin foam model for general Lorentzian 4-geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spin%20foam%20model%20for%20general%20Lorentzian%204-geometries&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Conrady,%20Florian&rft.date=2010-09-21&rft.volume=27&rft.issue=18&rft.spage=185011&rft.epage=185011&rft.pages=185011-185011&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/27/18/185011&rft_dat=%3Cproquest_pasca%3E855693740%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855693740&rft_id=info:pmid/&rfr_iscdi=true