Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging
Abstract Multifunctional hollow manganese oxide nanoparticles (HMON) were produced by a bio-inspired surface functionalization approach, using 3,4-dihydroxy- l -phenylalanine (DOPA) as an adhesive moiety, for cancer targeted delivery of therapeutic siRNA and simultaneous diagnosis via magnetic reson...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-01, Vol.32 (1), p.176-184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 1 |
container_start_page | 176 |
container_title | Biomaterials |
container_volume | 32 |
creator | Bae, Ki Hyun Lee, Kyuri Kim, Chunsoo Park, Tae Gwan |
description | Abstract Multifunctional hollow manganese oxide nanoparticles (HMON) were produced by a bio-inspired surface functionalization approach, using 3,4-dihydroxy- l -phenylalanine (DOPA) as an adhesive moiety, for cancer targeted delivery of therapeutic siRNA and simultaneous diagnosis via magnetic resonance imaging (MRI). Cationic polyethylenimine-DOPA conjugates were stably immobilized onto the surface of HMON due to the strong binding affinity of DOPA to metal oxides, as examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. These nanoparticles were subsequently functionalized with a therapeutic monoclonal antibody, Herceptin, to selectively target cancer cells. Confocal microscopy and MR imaging studies revealed that the surface functionalized HMON enabled the targeted detection of cancer cells in T1 -weighted MRI as well as the efficient intracellular delivery of siRNA for cell-specific gene silencing. These nanomaterials are expected to be widely exploited as multifunctional delivery vehicles for cancer therapy and imaging applications. |
doi_str_mv | 10.1016/j.biomaterials.2010.09.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855692101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961210012366</els_id><sourcerecordid>808459503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-2d80b44905afb984279a4aea1168f135a738a426b486a7ac3f726109f3d575a73</originalsourceid><addsrcrecordid>eNqNUk2P0zAQjRCILQt_ASwunFJsx3FiDkir5VNagUTZszV1JsUltbt2slAk_jsTuiDEBXyxbL_3xm_eFMVjwZeCC_10u1z7uIMRk4chLyWnB26WvDK3ioVom7asDa9vFwsulCyNFvKkuJfzltOZK3m3OJHcVKpRelF8X02pB4esn4IbfQww-G_YsU9xGOIXtoOwgYAZWfzqO2QBQtxDGr0bMLM-JuYgOExshLTBkYjZf3h3xjoc_DWmA4PQkcgmIFFYwkwFCM883fmwuV_c6ckCPrjZT4vLVy8_nr8pL96_fnt-dlG6utZjKbuWr5UiU9CvTatkY0ABghC67UVVQ1O1oKReq1ZDA67qG6kFN33V1c38elo8OeruU7yaMI9257PDYSBvccq2pTJGUnP_jeStqk3NK0I-OyJdijkn7O0-ka10sILbOSe7tX_mZOecLDeWciLyw5sy03qH3W_qr2AI8OgI6CFa2CSf7eWKFGpOS8ufiBdHBFLjrj0mm51Ham7nE7rRdtH_30-e_yXjBh-8g-EzHjBv45TCzBE2S8vtap6peaQETZOstK5-AJKKyqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>808459503</pqid></control><display><type>article</type><title>Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bae, Ki Hyun ; Lee, Kyuri ; Kim, Chunsoo ; Park, Tae Gwan</creator><creatorcontrib>Bae, Ki Hyun ; Lee, Kyuri ; Kim, Chunsoo ; Park, Tae Gwan</creatorcontrib><description>Abstract Multifunctional hollow manganese oxide nanoparticles (HMON) were produced by a bio-inspired surface functionalization approach, using 3,4-dihydroxy- l -phenylalanine (DOPA) as an adhesive moiety, for cancer targeted delivery of therapeutic siRNA and simultaneous diagnosis via magnetic resonance imaging (MRI). Cationic polyethylenimine-DOPA conjugates were stably immobilized onto the surface of HMON due to the strong binding affinity of DOPA to metal oxides, as examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. These nanoparticles were subsequently functionalized with a therapeutic monoclonal antibody, Herceptin, to selectively target cancer cells. Confocal microscopy and MR imaging studies revealed that the surface functionalized HMON enabled the targeted detection of cancer cells in T1 -weighted MRI as well as the efficient intracellular delivery of siRNA for cell-specific gene silencing. These nanomaterials are expected to be widely exploited as multifunctional delivery vehicles for cancer therapy and imaging applications.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.09.039</identifier><identifier>PMID: 20934746</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal, Humanized ; antineoplastic agents ; binding capacity ; Bio-inspired ; Cell Line, Tumor ; confocal laser scanning microscopy ; Dentistry ; dihydroxyphenylalanine ; Dihydroxyphenylalanine - pharmacology ; disease diagnosis ; Drug Carriers ; Electrophoresis, Agar Gel ; Fourier transform infrared spectroscopy ; gene silencing ; Gene Silencing - drug effects ; Gene Transfer Techniques ; Humans ; image analysis ; Intracellular Space - metabolism ; Magnetic Resonance Imaging ; Manganese Compounds - chemistry ; Manganese oxide ; manganese oxides ; Microscopy, Confocal ; monoclonal antibodies ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; neoplasms ; Neoplasms - metabolism ; Neoplasms - pathology ; Oxides - chemistry ; Polyethyleneimine - pharmacology ; RNA, Small Interfering - metabolism ; Small interfering RNA ; Spectroscopy, Fourier Transform Infrared ; Surface Properties - drug effects ; therapeutics ; Trastuzumab ; X-ray photoelectron spectroscopy</subject><ispartof>Biomaterials, 2011-01, Vol.32 (1), p.176-184</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-2d80b44905afb984279a4aea1168f135a738a426b486a7ac3f726109f3d575a73</citedby><cites>FETCH-LOGICAL-c556t-2d80b44905afb984279a4aea1168f135a738a426b486a7ac3f726109f3d575a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961210012366$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20934746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, Ki Hyun</creatorcontrib><creatorcontrib>Lee, Kyuri</creatorcontrib><creatorcontrib>Kim, Chunsoo</creatorcontrib><creatorcontrib>Park, Tae Gwan</creatorcontrib><title>Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Multifunctional hollow manganese oxide nanoparticles (HMON) were produced by a bio-inspired surface functionalization approach, using 3,4-dihydroxy- l -phenylalanine (DOPA) as an adhesive moiety, for cancer targeted delivery of therapeutic siRNA and simultaneous diagnosis via magnetic resonance imaging (MRI). Cationic polyethylenimine-DOPA conjugates were stably immobilized onto the surface of HMON due to the strong binding affinity of DOPA to metal oxides, as examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. These nanoparticles were subsequently functionalized with a therapeutic monoclonal antibody, Herceptin, to selectively target cancer cells. Confocal microscopy and MR imaging studies revealed that the surface functionalized HMON enabled the targeted detection of cancer cells in T1 -weighted MRI as well as the efficient intracellular delivery of siRNA for cell-specific gene silencing. These nanomaterials are expected to be widely exploited as multifunctional delivery vehicles for cancer therapy and imaging applications.</description><subject>Advanced Basic Science</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>antineoplastic agents</subject><subject>binding capacity</subject><subject>Bio-inspired</subject><subject>Cell Line, Tumor</subject><subject>confocal laser scanning microscopy</subject><subject>Dentistry</subject><subject>dihydroxyphenylalanine</subject><subject>Dihydroxyphenylalanine - pharmacology</subject><subject>disease diagnosis</subject><subject>Drug Carriers</subject><subject>Electrophoresis, Agar Gel</subject><subject>Fourier transform infrared spectroscopy</subject><subject>gene silencing</subject><subject>Gene Silencing - drug effects</subject><subject>Gene Transfer Techniques</subject><subject>Humans</subject><subject>image analysis</subject><subject>Intracellular Space - metabolism</subject><subject>Magnetic Resonance Imaging</subject><subject>Manganese Compounds - chemistry</subject><subject>Manganese oxide</subject><subject>manganese oxides</subject><subject>Microscopy, Confocal</subject><subject>monoclonal antibodies</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>neoplasms</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Oxides - chemistry</subject><subject>Polyethyleneimine - pharmacology</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Small interfering RNA</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties - drug effects</subject><subject>therapeutics</subject><subject>Trastuzumab</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P0zAQjRCILQt_ASwunFJsx3FiDkir5VNagUTZszV1JsUltbt2slAk_jsTuiDEBXyxbL_3xm_eFMVjwZeCC_10u1z7uIMRk4chLyWnB26WvDK3ioVom7asDa9vFwsulCyNFvKkuJfzltOZK3m3OJHcVKpRelF8X02pB4esn4IbfQww-G_YsU9xGOIXtoOwgYAZWfzqO2QBQtxDGr0bMLM-JuYgOExshLTBkYjZf3h3xjoc_DWmA4PQkcgmIFFYwkwFCM883fmwuV_c6ckCPrjZT4vLVy8_nr8pL96_fnt-dlG6utZjKbuWr5UiU9CvTatkY0ABghC67UVVQ1O1oKReq1ZDA67qG6kFN33V1c38elo8OeruU7yaMI9257PDYSBvccq2pTJGUnP_jeStqk3NK0I-OyJdijkn7O0-ka10sILbOSe7tX_mZOecLDeWciLyw5sy03qH3W_qr2AI8OgI6CFa2CSf7eWKFGpOS8ufiBdHBFLjrj0mm51Ham7nE7rRdtH_30-e_yXjBh-8g-EzHjBv45TCzBE2S8vtap6peaQETZOstK5-AJKKyqk</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bae, Ki Hyun</creator><creator>Lee, Kyuri</creator><creator>Kim, Chunsoo</creator><creator>Park, Tae Gwan</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110101</creationdate><title>Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging</title><author>Bae, Ki Hyun ; Lee, Kyuri ; Kim, Chunsoo ; Park, Tae Gwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-2d80b44905afb984279a4aea1168f135a738a426b486a7ac3f726109f3d575a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>antineoplastic agents</topic><topic>binding capacity</topic><topic>Bio-inspired</topic><topic>Cell Line, Tumor</topic><topic>confocal laser scanning microscopy</topic><topic>Dentistry</topic><topic>dihydroxyphenylalanine</topic><topic>Dihydroxyphenylalanine - pharmacology</topic><topic>disease diagnosis</topic><topic>Drug Carriers</topic><topic>Electrophoresis, Agar Gel</topic><topic>Fourier transform infrared spectroscopy</topic><topic>gene silencing</topic><topic>Gene Silencing - drug effects</topic><topic>Gene Transfer Techniques</topic><topic>Humans</topic><topic>image analysis</topic><topic>Intracellular Space - metabolism</topic><topic>Magnetic Resonance Imaging</topic><topic>Manganese Compounds - chemistry</topic><topic>Manganese oxide</topic><topic>manganese oxides</topic><topic>Microscopy, Confocal</topic><topic>monoclonal antibodies</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>neoplasms</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Oxides - chemistry</topic><topic>Polyethyleneimine - pharmacology</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Small interfering RNA</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties - drug effects</topic><topic>therapeutics</topic><topic>Trastuzumab</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Ki Hyun</creatorcontrib><creatorcontrib>Lee, Kyuri</creatorcontrib><creatorcontrib>Kim, Chunsoo</creatorcontrib><creatorcontrib>Park, Tae Gwan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Ki Hyun</au><au>Lee, Kyuri</au><au>Kim, Chunsoo</au><au>Park, Tae Gwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>1</issue><spage>176</spage><epage>184</epage><pages>176-184</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Multifunctional hollow manganese oxide nanoparticles (HMON) were produced by a bio-inspired surface functionalization approach, using 3,4-dihydroxy- l -phenylalanine (DOPA) as an adhesive moiety, for cancer targeted delivery of therapeutic siRNA and simultaneous diagnosis via magnetic resonance imaging (MRI). Cationic polyethylenimine-DOPA conjugates were stably immobilized onto the surface of HMON due to the strong binding affinity of DOPA to metal oxides, as examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. These nanoparticles were subsequently functionalized with a therapeutic monoclonal antibody, Herceptin, to selectively target cancer cells. Confocal microscopy and MR imaging studies revealed that the surface functionalized HMON enabled the targeted detection of cancer cells in T1 -weighted MRI as well as the efficient intracellular delivery of siRNA for cell-specific gene silencing. These nanomaterials are expected to be widely exploited as multifunctional delivery vehicles for cancer therapy and imaging applications.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20934746</pmid><doi>10.1016/j.biomaterials.2010.09.039</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-01, Vol.32 (1), p.176-184 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_855692101 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal, Humanized antineoplastic agents binding capacity Bio-inspired Cell Line, Tumor confocal laser scanning microscopy Dentistry dihydroxyphenylalanine Dihydroxyphenylalanine - pharmacology disease diagnosis Drug Carriers Electrophoresis, Agar Gel Fourier transform infrared spectroscopy gene silencing Gene Silencing - drug effects Gene Transfer Techniques Humans image analysis Intracellular Space - metabolism Magnetic Resonance Imaging Manganese Compounds - chemistry Manganese oxide manganese oxides Microscopy, Confocal monoclonal antibodies Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure neoplasms Neoplasms - metabolism Neoplasms - pathology Oxides - chemistry Polyethyleneimine - pharmacology RNA, Small Interfering - metabolism Small interfering RNA Spectroscopy, Fourier Transform Infrared Surface Properties - drug effects therapeutics Trastuzumab X-ray photoelectron spectroscopy |
title | Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20functionalized%20hollow%20manganese%20oxide%20nanoparticles%20for%20cancer%20targeted%20siRNA%20delivery%20and%20magnetic%20resonance%20imaging&rft.jtitle=Biomaterials&rft.au=Bae,%20Ki%20Hyun&rft.date=2011-01-01&rft.volume=32&rft.issue=1&rft.spage=176&rft.epage=184&rft.pages=176-184&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.09.039&rft_dat=%3Cproquest_cross%3E808459503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=808459503&rft_id=info:pmid/20934746&rft_els_id=1_s2_0_S0142961210012366&rfr_iscdi=true |