Characterization of escaping electrons from simulations of hot electron transport for intense femtosecond laser–target scenarios
Early experimental and analytical results for short-pulse, high intensity laser–target scenarios have claimed the existence of significant surface currents along the target edge due to hot electron confinement by electromagnetic surface fields. However, more recent fully integrated-explicit and hybr...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2010-09, Vol.50 (9), p.095002-095002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 095002 |
---|---|
container_issue | 9 |
container_start_page | 095002 |
container_title | Nuclear fusion |
container_volume | 50 |
creator | Cottrill, L.A Kemp, A Tabak, M Town, R.P.J |
description | Early experimental and analytical results for short-pulse, high intensity laser–target scenarios have claimed the existence of significant surface currents along the target edge due to hot electron confinement by electromagnetic surface fields. However, more recent fully integrated-explicit and hybrid-implicit particle-in-cell (PIC) simulations have revealed that surface confinement is only a minor effect. This discrepancy can be attributed to an observational effect; only a small fraction of electrons escape and they may not represent the bulk distribution. PIC simulations reveal that enhanced surface emission is largely dependent on target geometry and has only a minor dependence on laser incidence angle and/or the angular distribution of the hot electron birth distribution. Furthermore, the escape distribution appears to differ from the initial birth distribution primarily at low energies and is higher in temperature, which is significant for the interpretation of experimental measurements. |
doi_str_mv | 10.1088/0029-5515/50/9/095002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_855691588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855691588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-611e5c8a4c38e2ee0089eaec8a2ce6ef4bcdb5e985da6341240b934b2b4001e13</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoO44LjrIwhBEC-2k3SSNjnK4D9Y8KLnkM5UdiLdSZvKHPQkvoJvuE-yGXuZi-KpoOpXVV99RchTzl5xpvWWsd50SnG1VWxrtsyolnlANvy15J0U_fCQbM7MI_IY8StjXHIhNuTX7uCK8xVK_OFqzInmQAG9W2K6oTCBryUnpKHkmWKcj9MfCk_YIdczQWtxCZdcKg250JgqJAQaYK4Zwee0p5NDKLc_f1dXbqBS9JBciRmvyEVwE8KT-3hJvrx7-3n3obv-9P7j7s1155UQtRs4B-W1k15o6AEY0wYctEzvYYAgR78fFRit9m4QkveSjUbIsR9luxa4uCTP1rkZa7ToYwV_aMpSu8ByPigtTINerNBS8rcjYLVzbEqnySXIR7RaqcFwpXUj1Ur6khELBLuUOLvy3XJmT3-xJ8_tyXOrmDV2_Uvre36_wTWbp9B88xHPzb0QrFeKNe7lysW8nKv_HGmXfWg4-xv_v5I7B1KtkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855691588</pqid></control><display><type>article</type><title>Characterization of escaping electrons from simulations of hot electron transport for intense femtosecond laser–target scenarios</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Cottrill, L.A ; Kemp, A ; Tabak, M ; Town, R.P.J</creator><creatorcontrib>Cottrill, L.A ; Kemp, A ; Tabak, M ; Town, R.P.J ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Early experimental and analytical results for short-pulse, high intensity laser–target scenarios have claimed the existence of significant surface currents along the target edge due to hot electron confinement by electromagnetic surface fields. However, more recent fully integrated-explicit and hybrid-implicit particle-in-cell (PIC) simulations have revealed that surface confinement is only a minor effect. This discrepancy can be attributed to an observational effect; only a small fraction of electrons escape and they may not represent the bulk distribution. PIC simulations reveal that enhanced surface emission is largely dependent on target geometry and has only a minor dependence on laser incidence angle and/or the angular distribution of the hot electron birth distribution. Furthermore, the escape distribution appears to differ from the initial birth distribution primarily at low energies and is higher in temperature, which is significant for the interpretation of experimental measurements.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/50/9/095002</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION ; Birth ; CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS ; Confinement ; ENERGY PLANNING, POLICY AND ECONOMY ; ENGINEERING ; Exact sciences and technology ; Femtosecond ; Hot electrons ; Incidence angle ; Lasers ; Mathematical analysis ; Particle in cell technique ; Particle-in-cell method ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma properties ; Plasma simulation ; Simulation ; Transport properties</subject><ispartof>Nuclear fusion, 2010-09, Vol.50 (9), p.095002-095002</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-611e5c8a4c38e2ee0089eaec8a2ce6ef4bcdb5e985da6341240b934b2b4001e13</citedby><cites>FETCH-LOGICAL-c533t-611e5c8a4c38e2ee0089eaec8a2ce6ef4bcdb5e985da6341240b934b2b4001e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/50/9/095002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23302550$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1165839$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cottrill, L.A</creatorcontrib><creatorcontrib>Kemp, A</creatorcontrib><creatorcontrib>Tabak, M</creatorcontrib><creatorcontrib>Town, R.P.J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Characterization of escaping electrons from simulations of hot electron transport for intense femtosecond laser–target scenarios</title><title>Nuclear fusion</title><description>Early experimental and analytical results for short-pulse, high intensity laser–target scenarios have claimed the existence of significant surface currents along the target edge due to hot electron confinement by electromagnetic surface fields. However, more recent fully integrated-explicit and hybrid-implicit particle-in-cell (PIC) simulations have revealed that surface confinement is only a minor effect. This discrepancy can be attributed to an observational effect; only a small fraction of electrons escape and they may not represent the bulk distribution. PIC simulations reveal that enhanced surface emission is largely dependent on target geometry and has only a minor dependence on laser incidence angle and/or the angular distribution of the hot electron birth distribution. Furthermore, the escape distribution appears to differ from the initial birth distribution primarily at low energies and is higher in temperature, which is significant for the interpretation of experimental measurements.</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>Birth</subject><subject>CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS</subject><subject>Confinement</subject><subject>ENERGY PLANNING, POLICY AND ECONOMY</subject><subject>ENGINEERING</subject><subject>Exact sciences and technology</subject><subject>Femtosecond</subject><subject>Hot electrons</subject><subject>Incidence angle</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Particle in cell technique</subject><subject>Particle-in-cell method</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma properties</subject><subject>Plasma simulation</subject><subject>Simulation</subject><subject>Transport properties</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kc-KFDEQxoO44LjrIwhBEC-2k3SSNjnK4D9Y8KLnkM5UdiLdSZvKHPQkvoJvuE-yGXuZi-KpoOpXVV99RchTzl5xpvWWsd50SnG1VWxrtsyolnlANvy15J0U_fCQbM7MI_IY8StjXHIhNuTX7uCK8xVK_OFqzInmQAG9W2K6oTCBryUnpKHkmWKcj9MfCk_YIdczQWtxCZdcKg250JgqJAQaYK4Zwee0p5NDKLc_f1dXbqBS9JBciRmvyEVwE8KT-3hJvrx7-3n3obv-9P7j7s1155UQtRs4B-W1k15o6AEY0wYctEzvYYAgR78fFRit9m4QkveSjUbIsR9luxa4uCTP1rkZa7ToYwV_aMpSu8ByPigtTINerNBS8rcjYLVzbEqnySXIR7RaqcFwpXUj1Ur6khELBLuUOLvy3XJmT3-xJ8_tyXOrmDV2_Uvre36_wTWbp9B88xHPzb0QrFeKNe7lysW8nKv_HGmXfWg4-xv_v5I7B1KtkA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Cottrill, L.A</creator><creator>Kemp, A</creator><creator>Tabak, M</creator><creator>Town, R.P.J</creator><general>IOP Publishing</general><general>Institute of Physics</general><general>IOP Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20100901</creationdate><title>Characterization of escaping electrons from simulations of hot electron transport for intense femtosecond laser–target scenarios</title><author>Cottrill, L.A ; Kemp, A ; Tabak, M ; Town, R.P.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-611e5c8a4c38e2ee0089eaec8a2ce6ef4bcdb5e985da6341240b934b2b4001e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>Birth</topic><topic>CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS</topic><topic>Confinement</topic><topic>ENERGY PLANNING, POLICY AND ECONOMY</topic><topic>ENGINEERING</topic><topic>Exact sciences and technology</topic><topic>Femtosecond</topic><topic>Hot electrons</topic><topic>Incidence angle</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Particle in cell technique</topic><topic>Particle-in-cell method</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma properties</topic><topic>Plasma simulation</topic><topic>Simulation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottrill, L.A</creatorcontrib><creatorcontrib>Kemp, A</creatorcontrib><creatorcontrib>Tabak, M</creatorcontrib><creatorcontrib>Town, R.P.J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cottrill, L.A</au><au>Kemp, A</au><au>Tabak, M</au><au>Town, R.P.J</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of escaping electrons from simulations of hot electron transport for intense femtosecond laser–target scenarios</atitle><jtitle>Nuclear fusion</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>50</volume><issue>9</issue><spage>095002</spage><epage>095002</epage><pages>095002-095002</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Early experimental and analytical results for short-pulse, high intensity laser–target scenarios have claimed the existence of significant surface currents along the target edge due to hot electron confinement by electromagnetic surface fields. However, more recent fully integrated-explicit and hybrid-implicit particle-in-cell (PIC) simulations have revealed that surface confinement is only a minor effect. This discrepancy can be attributed to an observational effect; only a small fraction of electrons escape and they may not represent the bulk distribution. PIC simulations reveal that enhanced surface emission is largely dependent on target geometry and has only a minor dependence on laser incidence angle and/or the angular distribution of the hot electron birth distribution. Furthermore, the escape distribution appears to differ from the initial birth distribution primarily at low energies and is higher in temperature, which is significant for the interpretation of experimental measurements.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0029-5515/50/9/095002</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2010-09, Vol.50 (9), p.095002-095002 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_proquest_miscellaneous_855691588 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 70 PLASMA PHYSICS AND FUSION Birth CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS Confinement ENERGY PLANNING, POLICY AND ECONOMY ENGINEERING Exact sciences and technology Femtosecond Hot electrons Incidence angle Lasers Mathematical analysis Particle in cell technique Particle-in-cell method Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma properties Plasma simulation Simulation Transport properties |
title | Characterization of escaping electrons from simulations of hot electron transport for intense femtosecond laser–target scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20escaping%20electrons%20from%20simulations%20of%20hot%20electron%20transport%20for%20intense%20femtosecond%20laser%E2%80%93target%20scenarios&rft.jtitle=Nuclear%20fusion&rft.au=Cottrill,%20L.A&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2010-09-01&rft.volume=50&rft.issue=9&rft.spage=095002&rft.epage=095002&rft.pages=095002-095002&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/50/9/095002&rft_dat=%3Cproquest_pasca%3E855691588%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855691588&rft_id=info:pmid/&rfr_iscdi=true |