Conditional edge-fault-tolerant Hamiltonicity of dual-cubes
The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC( n) has n + 1 links per node where n is the degree of a cluster ( n-cub...
Gespeichert in:
Veröffentlicht in: | Information sciences 2011-02, Vol.181 (3), p.620-627 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | 3 |
container_start_page | 620 |
container_title | Information sciences |
container_volume | 181 |
creator | Chen, Jheng-Cheng Tsai, Chang-Hsiung |
description | The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube
DC(
n) has
n
+
1 links per node where
n is the degree of a cluster (
n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube
DC(
n) contains a fault-free Hamiltonian cycle, even if it has up to 2
n
−
3 link faults. The result is optimal with respect to the number of tolerant edge faults. |
doi_str_mv | 10.1016/j.ins.2010.09.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855691466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510004822</els_id><sourcerecordid>855691466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-c15d219cbd2dbfb0027f04fb256531996196d26e9a1227675343aa0d7454df4b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNvePGWdZDfZhp6kqBUKXvQcsvmQLOmmJlmh_94t9expGHifl5kHoXsCNQHCH4faj7mmMO8gaqCrC7Qgq45iTgW5RAsAChgoY9foJucBANqO8wVab-JofPFxVKGy5stip6ZQcInBJjWWaqv2PpQ4eu3LsYquMpMKWE-9zbfoyqmQ7d3fXKLPl-ePzRbv3l_fNk87rBsqCtaEGUqE7g01vevnSzoHresp46whQnAiuKHcCkUo7XjHmrZRCkzXsta4tm-W6OHce0jxe7K5yL3P2oagRhunLFeMcUFazuckOSd1ijkn6-Qh-b1KR0lAnjzJQc6e5MmTBCFnTzOzPjN2fuHH2ySz9nbU1vhkdZEm-n_oXyaHb7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855691466</pqid></control><display><type>article</type><title>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Jheng-Cheng ; Tsai, Chang-Hsiung</creator><creatorcontrib>Chen, Jheng-Cheng ; Tsai, Chang-Hsiung</creatorcontrib><description>The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube
DC(
n) has
n
+
1 links per node where
n is the degree of a cluster (
n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube
DC(
n) contains a fault-free Hamiltonian cycle, even if it has up to 2
n
−
3 link faults. The result is optimal with respect to the number of tolerant edge faults.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.09.028</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Clusters ; Conditional fault-tolerant ; Dual-cubes ; Faults ; Hamiltonian cycle ; Hypercube ; Hypercubes ; Interconnection ; Interconnection network ; Joining ; Linking ; Links ; Networks ; Optimization</subject><ispartof>Information sciences, 2011-02, Vol.181 (3), p.620-627</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-c15d219cbd2dbfb0027f04fb256531996196d26e9a1227675343aa0d7454df4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025510004822$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Jheng-Cheng</creatorcontrib><creatorcontrib>Tsai, Chang-Hsiung</creatorcontrib><title>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</title><title>Information sciences</title><description>The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube
DC(
n) has
n
+
1 links per node where
n is the degree of a cluster (
n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube
DC(
n) contains a fault-free Hamiltonian cycle, even if it has up to 2
n
−
3 link faults. The result is optimal with respect to the number of tolerant edge faults.</description><subject>Clusters</subject><subject>Conditional fault-tolerant</subject><subject>Dual-cubes</subject><subject>Faults</subject><subject>Hamiltonian cycle</subject><subject>Hypercube</subject><subject>Hypercubes</subject><subject>Interconnection</subject><subject>Interconnection network</subject><subject>Joining</subject><subject>Linking</subject><subject>Links</subject><subject>Networks</subject><subject>Optimization</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNvePGWdZDfZhp6kqBUKXvQcsvmQLOmmJlmh_94t9expGHifl5kHoXsCNQHCH4faj7mmMO8gaqCrC7Qgq45iTgW5RAsAChgoY9foJucBANqO8wVab-JofPFxVKGy5stip6ZQcInBJjWWaqv2PpQ4eu3LsYquMpMKWE-9zbfoyqmQ7d3fXKLPl-ePzRbv3l_fNk87rBsqCtaEGUqE7g01vevnSzoHresp46whQnAiuKHcCkUo7XjHmrZRCkzXsta4tm-W6OHce0jxe7K5yL3P2oagRhunLFeMcUFazuckOSd1ijkn6-Qh-b1KR0lAnjzJQc6e5MmTBCFnTzOzPjN2fuHH2ySz9nbU1vhkdZEm-n_oXyaHb7E</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chen, Jheng-Cheng</creator><creator>Tsai, Chang-Hsiung</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</title><author>Chen, Jheng-Cheng ; Tsai, Chang-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-c15d219cbd2dbfb0027f04fb256531996196d26e9a1227675343aa0d7454df4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clusters</topic><topic>Conditional fault-tolerant</topic><topic>Dual-cubes</topic><topic>Faults</topic><topic>Hamiltonian cycle</topic><topic>Hypercube</topic><topic>Hypercubes</topic><topic>Interconnection</topic><topic>Interconnection network</topic><topic>Joining</topic><topic>Linking</topic><topic>Links</topic><topic>Networks</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jheng-Cheng</creatorcontrib><creatorcontrib>Tsai, Chang-Hsiung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jheng-Cheng</au><au>Tsai, Chang-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</atitle><jtitle>Information sciences</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>181</volume><issue>3</issue><spage>620</spage><epage>627</epage><pages>620-627</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube
DC(
n) has
n
+
1 links per node where
n is the degree of a cluster (
n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube
DC(
n) contains a fault-free Hamiltonian cycle, even if it has up to 2
n
−
3 link faults. The result is optimal with respect to the number of tolerant edge faults.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.09.028</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2011-02, Vol.181 (3), p.620-627 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_855691466 |
source | Elsevier ScienceDirect Journals |
subjects | Clusters Conditional fault-tolerant Dual-cubes Faults Hamiltonian cycle Hypercube Hypercubes Interconnection Interconnection network Joining Linking Links Networks Optimization |
title | Conditional edge-fault-tolerant Hamiltonicity of dual-cubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20edge-fault-tolerant%20Hamiltonicity%20of%20dual-cubes&rft.jtitle=Information%20sciences&rft.au=Chen,%20Jheng-Cheng&rft.date=2011-02-01&rft.volume=181&rft.issue=3&rft.spage=620&rft.epage=627&rft.pages=620-627&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.09.028&rft_dat=%3Cproquest_cross%3E855691466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855691466&rft_id=info:pmid/&rft_els_id=S0020025510004822&rfr_iscdi=true |