Conditional edge-fault-tolerant Hamiltonicity of dual-cubes

The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC( n) has n + 1 links per node where n is the degree of a cluster ( n-cub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011-02, Vol.181 (3), p.620-627
Hauptverfasser: Chen, Jheng-Cheng, Tsai, Chang-Hsiung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue 3
container_start_page 620
container_title Information sciences
container_volume 181
creator Chen, Jheng-Cheng
Tsai, Chang-Hsiung
description The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC( n) has n + 1 links per node where n is the degree of a cluster ( n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube DC( n) contains a fault-free Hamiltonian cycle, even if it has up to 2 n − 3 link faults. The result is optimal with respect to the number of tolerant edge faults.
doi_str_mv 10.1016/j.ins.2010.09.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855691466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510004822</els_id><sourcerecordid>855691466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-c15d219cbd2dbfb0027f04fb256531996196d26e9a1227675343aa0d7454df4b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNvePGWdZDfZhp6kqBUKXvQcsvmQLOmmJlmh_94t9expGHifl5kHoXsCNQHCH4faj7mmMO8gaqCrC7Qgq45iTgW5RAsAChgoY9foJucBANqO8wVab-JofPFxVKGy5stip6ZQcInBJjWWaqv2PpQ4eu3LsYquMpMKWE-9zbfoyqmQ7d3fXKLPl-ePzRbv3l_fNk87rBsqCtaEGUqE7g01vevnSzoHresp46whQnAiuKHcCkUo7XjHmrZRCkzXsta4tm-W6OHce0jxe7K5yL3P2oagRhunLFeMcUFazuckOSd1ijkn6-Qh-b1KR0lAnjzJQc6e5MmTBCFnTzOzPjN2fuHH2ySz9nbU1vhkdZEm-n_oXyaHb7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855691466</pqid></control><display><type>article</type><title>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Jheng-Cheng ; Tsai, Chang-Hsiung</creator><creatorcontrib>Chen, Jheng-Cheng ; Tsai, Chang-Hsiung</creatorcontrib><description>The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC( n) has n + 1 links per node where n is the degree of a cluster ( n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube DC( n) contains a fault-free Hamiltonian cycle, even if it has up to 2 n − 3 link faults. The result is optimal with respect to the number of tolerant edge faults.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.09.028</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Clusters ; Conditional fault-tolerant ; Dual-cubes ; Faults ; Hamiltonian cycle ; Hypercube ; Hypercubes ; Interconnection ; Interconnection network ; Joining ; Linking ; Links ; Networks ; Optimization</subject><ispartof>Information sciences, 2011-02, Vol.181 (3), p.620-627</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-c15d219cbd2dbfb0027f04fb256531996196d26e9a1227675343aa0d7454df4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025510004822$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Jheng-Cheng</creatorcontrib><creatorcontrib>Tsai, Chang-Hsiung</creatorcontrib><title>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</title><title>Information sciences</title><description>The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC( n) has n + 1 links per node where n is the degree of a cluster ( n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube DC( n) contains a fault-free Hamiltonian cycle, even if it has up to 2 n − 3 link faults. The result is optimal with respect to the number of tolerant edge faults.</description><subject>Clusters</subject><subject>Conditional fault-tolerant</subject><subject>Dual-cubes</subject><subject>Faults</subject><subject>Hamiltonian cycle</subject><subject>Hypercube</subject><subject>Hypercubes</subject><subject>Interconnection</subject><subject>Interconnection network</subject><subject>Joining</subject><subject>Linking</subject><subject>Links</subject><subject>Networks</subject><subject>Optimization</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNvePGWdZDfZhp6kqBUKXvQcsvmQLOmmJlmh_94t9expGHifl5kHoXsCNQHCH4faj7mmMO8gaqCrC7Qgq45iTgW5RAsAChgoY9foJucBANqO8wVab-JofPFxVKGy5stip6ZQcInBJjWWaqv2PpQ4eu3LsYquMpMKWE-9zbfoyqmQ7d3fXKLPl-ePzRbv3l_fNk87rBsqCtaEGUqE7g01vevnSzoHresp46whQnAiuKHcCkUo7XjHmrZRCkzXsta4tm-W6OHce0jxe7K5yL3P2oagRhunLFeMcUFazuckOSd1ijkn6-Qh-b1KR0lAnjzJQc6e5MmTBCFnTzOzPjN2fuHH2ySz9nbU1vhkdZEm-n_oXyaHb7E</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chen, Jheng-Cheng</creator><creator>Tsai, Chang-Hsiung</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</title><author>Chen, Jheng-Cheng ; Tsai, Chang-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-c15d219cbd2dbfb0027f04fb256531996196d26e9a1227675343aa0d7454df4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clusters</topic><topic>Conditional fault-tolerant</topic><topic>Dual-cubes</topic><topic>Faults</topic><topic>Hamiltonian cycle</topic><topic>Hypercube</topic><topic>Hypercubes</topic><topic>Interconnection</topic><topic>Interconnection network</topic><topic>Joining</topic><topic>Linking</topic><topic>Links</topic><topic>Networks</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jheng-Cheng</creatorcontrib><creatorcontrib>Tsai, Chang-Hsiung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jheng-Cheng</au><au>Tsai, Chang-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional edge-fault-tolerant Hamiltonicity of dual-cubes</atitle><jtitle>Information sciences</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>181</volume><issue>3</issue><spage>620</spage><epage>627</epage><pages>620-627</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>The dual-cube is an interconnection network for linking a large number of nodes with a low node degree. It uses low-dimensional hypercubes as building blocks and keeps the main desired properties of the hypercube. A dual-cube DC( n) has n + 1 links per node where n is the degree of a cluster ( n-cube), and one more link is used for connecting to a node in another cluster. In this paper, assuming each node is incident with at least two fault-free links, we show a dual-cube DC( n) contains a fault-free Hamiltonian cycle, even if it has up to 2 n − 3 link faults. The result is optimal with respect to the number of tolerant edge faults.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.09.028</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2011-02, Vol.181 (3), p.620-627
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_855691466
source Elsevier ScienceDirect Journals
subjects Clusters
Conditional fault-tolerant
Dual-cubes
Faults
Hamiltonian cycle
Hypercube
Hypercubes
Interconnection
Interconnection network
Joining
Linking
Links
Networks
Optimization
title Conditional edge-fault-tolerant Hamiltonicity of dual-cubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20edge-fault-tolerant%20Hamiltonicity%20of%20dual-cubes&rft.jtitle=Information%20sciences&rft.au=Chen,%20Jheng-Cheng&rft.date=2011-02-01&rft.volume=181&rft.issue=3&rft.spage=620&rft.epage=627&rft.pages=620-627&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.09.028&rft_dat=%3Cproquest_cross%3E855691466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855691466&rft_id=info:pmid/&rft_els_id=S0020025510004822&rfr_iscdi=true