Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics

The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2011-01, Vol.185 (1), p.306-314
Hauptverfasser: Hu, Xin-jiang, Wang, Jing-song, Liu, Yun-guo, Li, Xin, Zeng, Guang-ming, Bao, Zheng-lei, Zeng, Xiao-xia, Chen, An-wei, Long, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 1
container_start_page 306
container_title Journal of hazardous materials
container_volume 185
creator Hu, Xin-jiang
Wang, Jing-song
Liu, Yun-guo
Li, Xin
Zeng, Guang-ming
Bao, Zheng-lei
Zeng, Xiao-xia
Chen, An-wei
Long, Fei
description The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10 min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813 mg g −1, 48.780 mg g −1 and 45.872 mg g −1 at 293, 303 and 313 K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1 N NaOH solutions.
doi_str_mv 10.1016/j.jhazmat.2010.09.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855687456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389410011933</els_id><sourcerecordid>812129436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</originalsourceid><addsrcrecordid>eNqF0suOFCEUBuCK0Tjj6COobIxjYrVQXArcmMnESyeTuNBxS2g4NU1PAS1Um7RrH1z6ou6cFYF85xzCT9M8JXhGMBFvVrPV0vwMZpp1uJ5hNcOU3WtOiexpSykV95tTTDFrqVTspHlUygpjTHrOHjYnHZZSdVyeNr8uXEl5PfkUURqQXeYU_Cag82_zV2ixRTAttyNEcN4EH6ENyfnBg0M2p1La0cfbugnmJsLkba33UyomogzFx7doXtK0hBzKa3Tr96QgEx3aHya3jbWrLY-bB4MZCzw5rmfN9Yf3Xy8_tVefP84vL65ay6WYWhjAUFCMUIkdWwDrqDCU2YFBz4ihyrheARCFgXSi6xdWMKqwI0oohfFAz5qXh77rnL5voEw6-GJhHE2EtClaci5kz7i4W5KOdIrRnTz_ryR9jylVEpNK-YHu3y7DoNfZB5O3mmC9C1Wv9DFUvQtVY6VrqLXu2XHEZhHA_a36k2IFL47AFGvGIZtoffnnqCSKd7y65wc3mKTNTa7m-kudxOvPEEKKvop3BwE1hh8esi7WQ7Q1_wx20i75Oy77G2QBzO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770339801</pqid></control><display><type>article</type><title>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hu, Xin-jiang ; Wang, Jing-song ; Liu, Yun-guo ; Li, Xin ; Zeng, Guang-ming ; Bao, Zheng-lei ; Zeng, Xiao-xia ; Chen, An-wei ; Long, Fei</creator><creatorcontrib>Hu, Xin-jiang ; Wang, Jing-song ; Liu, Yun-guo ; Li, Xin ; Zeng, Guang-ming ; Bao, Zheng-lei ; Zeng, Xiao-xia ; Chen, An-wei ; Long, Fei</creatorcontrib><description>The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10 min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813 mg g −1, 48.780 mg g −1 and 45.872 mg g −1 at 293, 303 and 313 K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1 N NaOH solutions.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.09.034</identifier><identifier>PMID: 20889258</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Algorithms ; Applied sciences ; Chemical engineering ; chitosan ; Chitosan - chemistry ; Chromium ; Chromium (VI) ; Chromium - chemistry ; Cross-Linking Reagents ; Crosslinking ; Diffusion ; EMCMCR ; Equilibrium isotherm ; Ethylenediamines - chemistry ; Exact sciences and technology ; heat production ; Hydrogen-Ion Concentration ; ions ; Kinetics ; Langmuir-Blodgett films ; Magnetics ; Mathematical models ; Microscopy, Electron, Scanning ; Models, Chemical ; Pollution ; Polymers ; sodium hydroxide ; sorption isotherms ; Temperature ; Thermodynamics</subject><ispartof>Journal of hazardous materials, 2011-01, Vol.185 (1), p.306-314</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</citedby><cites>FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389410011933$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23819525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20889258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xin-jiang</creatorcontrib><creatorcontrib>Wang, Jing-song</creatorcontrib><creatorcontrib>Liu, Yun-guo</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zeng, Guang-ming</creatorcontrib><creatorcontrib>Bao, Zheng-lei</creatorcontrib><creatorcontrib>Zeng, Xiao-xia</creatorcontrib><creatorcontrib>Chen, An-wei</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><title>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10 min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813 mg g −1, 48.780 mg g −1 and 45.872 mg g −1 at 293, 303 and 313 K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1 N NaOH solutions.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chromium</subject><subject>Chromium (VI)</subject><subject>Chromium - chemistry</subject><subject>Cross-Linking Reagents</subject><subject>Crosslinking</subject><subject>Diffusion</subject><subject>EMCMCR</subject><subject>Equilibrium isotherm</subject><subject>Ethylenediamines - chemistry</subject><subject>Exact sciences and technology</subject><subject>heat production</subject><subject>Hydrogen-Ion Concentration</subject><subject>ions</subject><subject>Kinetics</subject><subject>Langmuir-Blodgett films</subject><subject>Magnetics</subject><subject>Mathematical models</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Polymers</subject><subject>sodium hydroxide</subject><subject>sorption isotherms</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0suOFCEUBuCK0Tjj6COobIxjYrVQXArcmMnESyeTuNBxS2g4NU1PAS1Um7RrH1z6ou6cFYF85xzCT9M8JXhGMBFvVrPV0vwMZpp1uJ5hNcOU3WtOiexpSykV95tTTDFrqVTspHlUygpjTHrOHjYnHZZSdVyeNr8uXEl5PfkUURqQXeYU_Cag82_zV2ixRTAttyNEcN4EH6ENyfnBg0M2p1La0cfbugnmJsLkba33UyomogzFx7doXtK0hBzKa3Tr96QgEx3aHya3jbWrLY-bB4MZCzw5rmfN9Yf3Xy8_tVefP84vL65ay6WYWhjAUFCMUIkdWwDrqDCU2YFBz4ihyrheARCFgXSi6xdWMKqwI0oohfFAz5qXh77rnL5voEw6-GJhHE2EtClaci5kz7i4W5KOdIrRnTz_ryR9jylVEpNK-YHu3y7DoNfZB5O3mmC9C1Wv9DFUvQtVY6VrqLXu2XHEZhHA_a36k2IFL47AFGvGIZtoffnnqCSKd7y65wc3mKTNTa7m-kudxOvPEEKKvop3BwE1hh8esi7WQ7Q1_wx20i75Oy77G2QBzO0</recordid><startdate>20110115</startdate><enddate>20110115</enddate><creator>Hu, Xin-jiang</creator><creator>Wang, Jing-song</creator><creator>Liu, Yun-guo</creator><creator>Li, Xin</creator><creator>Zeng, Guang-ming</creator><creator>Bao, Zheng-lei</creator><creator>Zeng, Xiao-xia</creator><creator>Chen, An-wei</creator><creator>Long, Fei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110115</creationdate><title>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</title><author>Hu, Xin-jiang ; Wang, Jing-song ; Liu, Yun-guo ; Li, Xin ; Zeng, Guang-ming ; Bao, Zheng-lei ; Zeng, Xiao-xia ; Chen, An-wei ; Long, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chromium</topic><topic>Chromium (VI)</topic><topic>Chromium - chemistry</topic><topic>Cross-Linking Reagents</topic><topic>Crosslinking</topic><topic>Diffusion</topic><topic>EMCMCR</topic><topic>Equilibrium isotherm</topic><topic>Ethylenediamines - chemistry</topic><topic>Exact sciences and technology</topic><topic>heat production</topic><topic>Hydrogen-Ion Concentration</topic><topic>ions</topic><topic>Kinetics</topic><topic>Langmuir-Blodgett films</topic><topic>Magnetics</topic><topic>Mathematical models</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Polymers</topic><topic>sodium hydroxide</topic><topic>sorption isotherms</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xin-jiang</creatorcontrib><creatorcontrib>Wang, Jing-song</creatorcontrib><creatorcontrib>Liu, Yun-guo</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zeng, Guang-ming</creatorcontrib><creatorcontrib>Bao, Zheng-lei</creatorcontrib><creatorcontrib>Zeng, Xiao-xia</creatorcontrib><creatorcontrib>Chen, An-wei</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xin-jiang</au><au>Wang, Jing-song</au><au>Liu, Yun-guo</au><au>Li, Xin</au><au>Zeng, Guang-ming</au><au>Bao, Zheng-lei</au><au>Zeng, Xiao-xia</au><au>Chen, An-wei</au><au>Long, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-01-15</date><risdate>2011</risdate><volume>185</volume><issue>1</issue><spage>306</spage><epage>314</epage><pages>306-314</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10 min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813 mg g −1, 48.780 mg g −1 and 45.872 mg g −1 at 293, 303 and 313 K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1 N NaOH solutions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20889258</pmid><doi>10.1016/j.jhazmat.2010.09.034</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-01, Vol.185 (1), p.306-314
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_855687456
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
Algorithms
Applied sciences
Chemical engineering
chitosan
Chitosan - chemistry
Chromium
Chromium (VI)
Chromium - chemistry
Cross-Linking Reagents
Crosslinking
Diffusion
EMCMCR
Equilibrium isotherm
Ethylenediamines - chemistry
Exact sciences and technology
heat production
Hydrogen-Ion Concentration
ions
Kinetics
Langmuir-Blodgett films
Magnetics
Mathematical models
Microscopy, Electron, Scanning
Models, Chemical
Pollution
Polymers
sodium hydroxide
sorption isotherms
Temperature
Thermodynamics
title Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20chromium%20(VI)%20by%20ethylenediamine-modified%20cross-linked%20magnetic%20chitosan%20resin:%20Isotherms,%20kinetics%20and%20thermodynamics&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Hu,%20Xin-jiang&rft.date=2011-01-15&rft.volume=185&rft.issue=1&rft.spage=306&rft.epage=314&rft.pages=306-314&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.09.034&rft_dat=%3Cproquest_cross%3E812129436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770339801&rft_id=info:pmid/20889258&rft_els_id=S0304389410011933&rfr_iscdi=true