Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics
The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fa...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2011-01, Vol.185 (1), p.306-314 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 1 |
container_start_page | 306 |
container_title | Journal of hazardous materials |
container_volume | 185 |
creator | Hu, Xin-jiang Wang, Jing-song Liu, Yun-guo Li, Xin Zeng, Guang-ming Bao, Zheng-lei Zeng, Xiao-xia Chen, An-wei Long, Fei |
description | The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10
min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813
mg
g
−1, 48.780
mg
g
−1 and 45.872
mg
g
−1 at 293, 303 and 313
K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1
N NaOH solutions. |
doi_str_mv | 10.1016/j.jhazmat.2010.09.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855687456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389410011933</els_id><sourcerecordid>812129436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</originalsourceid><addsrcrecordid>eNqF0suOFCEUBuCK0Tjj6COobIxjYrVQXArcmMnESyeTuNBxS2g4NU1PAS1Um7RrH1z6ou6cFYF85xzCT9M8JXhGMBFvVrPV0vwMZpp1uJ5hNcOU3WtOiexpSykV95tTTDFrqVTspHlUygpjTHrOHjYnHZZSdVyeNr8uXEl5PfkUURqQXeYU_Cag82_zV2ixRTAttyNEcN4EH6ENyfnBg0M2p1La0cfbugnmJsLkba33UyomogzFx7doXtK0hBzKa3Tr96QgEx3aHya3jbWrLY-bB4MZCzw5rmfN9Yf3Xy8_tVefP84vL65ay6WYWhjAUFCMUIkdWwDrqDCU2YFBz4ihyrheARCFgXSi6xdWMKqwI0oohfFAz5qXh77rnL5voEw6-GJhHE2EtClaci5kz7i4W5KOdIrRnTz_ryR9jylVEpNK-YHu3y7DoNfZB5O3mmC9C1Wv9DFUvQtVY6VrqLXu2XHEZhHA_a36k2IFL47AFGvGIZtoffnnqCSKd7y65wc3mKTNTa7m-kudxOvPEEKKvop3BwE1hh8esi7WQ7Q1_wx20i75Oy77G2QBzO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770339801</pqid></control><display><type>article</type><title>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hu, Xin-jiang ; Wang, Jing-song ; Liu, Yun-guo ; Li, Xin ; Zeng, Guang-ming ; Bao, Zheng-lei ; Zeng, Xiao-xia ; Chen, An-wei ; Long, Fei</creator><creatorcontrib>Hu, Xin-jiang ; Wang, Jing-song ; Liu, Yun-guo ; Li, Xin ; Zeng, Guang-ming ; Bao, Zheng-lei ; Zeng, Xiao-xia ; Chen, An-wei ; Long, Fei</creatorcontrib><description>The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10
min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813
mg
g
−1, 48.780
mg
g
−1 and 45.872
mg
g
−1 at 293, 303 and 313
K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1
N NaOH solutions.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.09.034</identifier><identifier>PMID: 20889258</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Algorithms ; Applied sciences ; Chemical engineering ; chitosan ; Chitosan - chemistry ; Chromium ; Chromium (VI) ; Chromium - chemistry ; Cross-Linking Reagents ; Crosslinking ; Diffusion ; EMCMCR ; Equilibrium isotherm ; Ethylenediamines - chemistry ; Exact sciences and technology ; heat production ; Hydrogen-Ion Concentration ; ions ; Kinetics ; Langmuir-Blodgett films ; Magnetics ; Mathematical models ; Microscopy, Electron, Scanning ; Models, Chemical ; Pollution ; Polymers ; sodium hydroxide ; sorption isotherms ; Temperature ; Thermodynamics</subject><ispartof>Journal of hazardous materials, 2011-01, Vol.185 (1), p.306-314</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</citedby><cites>FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389410011933$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20889258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xin-jiang</creatorcontrib><creatorcontrib>Wang, Jing-song</creatorcontrib><creatorcontrib>Liu, Yun-guo</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zeng, Guang-ming</creatorcontrib><creatorcontrib>Bao, Zheng-lei</creatorcontrib><creatorcontrib>Zeng, Xiao-xia</creatorcontrib><creatorcontrib>Chen, An-wei</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><title>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10
min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813
mg
g
−1, 48.780
mg
g
−1 and 45.872
mg
g
−1 at 293, 303 and 313
K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1
N NaOH solutions.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chromium</subject><subject>Chromium (VI)</subject><subject>Chromium - chemistry</subject><subject>Cross-Linking Reagents</subject><subject>Crosslinking</subject><subject>Diffusion</subject><subject>EMCMCR</subject><subject>Equilibrium isotherm</subject><subject>Ethylenediamines - chemistry</subject><subject>Exact sciences and technology</subject><subject>heat production</subject><subject>Hydrogen-Ion Concentration</subject><subject>ions</subject><subject>Kinetics</subject><subject>Langmuir-Blodgett films</subject><subject>Magnetics</subject><subject>Mathematical models</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Polymers</subject><subject>sodium hydroxide</subject><subject>sorption isotherms</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0suOFCEUBuCK0Tjj6COobIxjYrVQXArcmMnESyeTuNBxS2g4NU1PAS1Um7RrH1z6ou6cFYF85xzCT9M8JXhGMBFvVrPV0vwMZpp1uJ5hNcOU3WtOiexpSykV95tTTDFrqVTspHlUygpjTHrOHjYnHZZSdVyeNr8uXEl5PfkUURqQXeYU_Cag82_zV2ixRTAttyNEcN4EH6ENyfnBg0M2p1La0cfbugnmJsLkba33UyomogzFx7doXtK0hBzKa3Tr96QgEx3aHya3jbWrLY-bB4MZCzw5rmfN9Yf3Xy8_tVefP84vL65ay6WYWhjAUFCMUIkdWwDrqDCU2YFBz4ihyrheARCFgXSi6xdWMKqwI0oohfFAz5qXh77rnL5voEw6-GJhHE2EtClaci5kz7i4W5KOdIrRnTz_ryR9jylVEpNK-YHu3y7DoNfZB5O3mmC9C1Wv9DFUvQtVY6VrqLXu2XHEZhHA_a36k2IFL47AFGvGIZtoffnnqCSKd7y65wc3mKTNTa7m-kudxOvPEEKKvop3BwE1hh8esi7WQ7Q1_wx20i75Oy77G2QBzO0</recordid><startdate>20110115</startdate><enddate>20110115</enddate><creator>Hu, Xin-jiang</creator><creator>Wang, Jing-song</creator><creator>Liu, Yun-guo</creator><creator>Li, Xin</creator><creator>Zeng, Guang-ming</creator><creator>Bao, Zheng-lei</creator><creator>Zeng, Xiao-xia</creator><creator>Chen, An-wei</creator><creator>Long, Fei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110115</creationdate><title>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</title><author>Hu, Xin-jiang ; Wang, Jing-song ; Liu, Yun-guo ; Li, Xin ; Zeng, Guang-ming ; Bao, Zheng-lei ; Zeng, Xiao-xia ; Chen, An-wei ; Long, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-efea3e941380d4be4236a34cf4e741a39ad79ee190e12627bc64390d1969900f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chromium</topic><topic>Chromium (VI)</topic><topic>Chromium - chemistry</topic><topic>Cross-Linking Reagents</topic><topic>Crosslinking</topic><topic>Diffusion</topic><topic>EMCMCR</topic><topic>Equilibrium isotherm</topic><topic>Ethylenediamines - chemistry</topic><topic>Exact sciences and technology</topic><topic>heat production</topic><topic>Hydrogen-Ion Concentration</topic><topic>ions</topic><topic>Kinetics</topic><topic>Langmuir-Blodgett films</topic><topic>Magnetics</topic><topic>Mathematical models</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Polymers</topic><topic>sodium hydroxide</topic><topic>sorption isotherms</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xin-jiang</creatorcontrib><creatorcontrib>Wang, Jing-song</creatorcontrib><creatorcontrib>Liu, Yun-guo</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zeng, Guang-ming</creatorcontrib><creatorcontrib>Bao, Zheng-lei</creatorcontrib><creatorcontrib>Zeng, Xiao-xia</creatorcontrib><creatorcontrib>Chen, An-wei</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xin-jiang</au><au>Wang, Jing-song</au><au>Liu, Yun-guo</au><au>Li, Xin</au><au>Zeng, Guang-ming</au><au>Bao, Zheng-lei</au><au>Zeng, Xiao-xia</au><au>Chen, An-wei</au><au>Long, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-01-15</date><risdate>2011</risdate><volume>185</volume><issue>1</issue><spage>306</spage><epage>314</epage><pages>306-314</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6–10
min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813
mg
g
−1, 48.780
mg
g
−1 and 45.872
mg
g
−1 at 293, 303 and 313
K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1
N NaOH solutions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20889258</pmid><doi>10.1016/j.jhazmat.2010.09.034</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2011-01, Vol.185 (1), p.306-314 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_855687456 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adsorption Algorithms Applied sciences Chemical engineering chitosan Chitosan - chemistry Chromium Chromium (VI) Chromium - chemistry Cross-Linking Reagents Crosslinking Diffusion EMCMCR Equilibrium isotherm Ethylenediamines - chemistry Exact sciences and technology heat production Hydrogen-Ion Concentration ions Kinetics Langmuir-Blodgett films Magnetics Mathematical models Microscopy, Electron, Scanning Models, Chemical Pollution Polymers sodium hydroxide sorption isotherms Temperature Thermodynamics |
title | Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20chromium%20(VI)%20by%20ethylenediamine-modified%20cross-linked%20magnetic%20chitosan%20resin:%20Isotherms,%20kinetics%20and%20thermodynamics&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Hu,%20Xin-jiang&rft.date=2011-01-15&rft.volume=185&rft.issue=1&rft.spage=306&rft.epage=314&rft.pages=306-314&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.09.034&rft_dat=%3Cproquest_cross%3E812129436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770339801&rft_id=info:pmid/20889258&rft_els_id=S0304389410011933&rfr_iscdi=true |