Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure

This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume frac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2011, Vol.93 (2), p.351-359
1. Verfasser: Maalawi, Karam Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 2
container_start_page 351
container_title Composite structures
container_volume 93
creator Maalawi, Karam Y.
description This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.
doi_str_mv 10.1016/j.compstruct.2010.09.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855686757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822310003119</els_id><sourcerecordid>855686757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhP_iC4JKtP-LYOULFl1SJSzlb3sl468WbLJ4EWn49jraCG_VlpPHzzjualzEuxVYK2V0etjAdTzSXBeatErUt-q0Q9gnbSGf7RgpnnrKNUJ1unFL6OXtBdBBCuFbKDfv9jZBPkR_DjCWFzPclDGnc8zgVjuNtGAEHvlvge167A1Laj6tgvk1j8yvkXL_XDSZKM_JSIbrMU0XhvioGLMSXtXC8qw5jdTgVJFoKvmTPYsiErx7qBbv5-OHm6nNz_fXTl6t31w20Us-N6xwYJ6VuLYKCXWcgml5Cq4MNbdSg0EJEubOuvh4M7lRU0mgYhB2svmBvzmNPZfqxIM3-mAgw5zDitJB3xnSus2Yl3_6XlLZTUgkjVUXdGYUyERWM_lTSMZR7L4Vfc_EH_y8Xv-biRe9rLlX6-sElEIQcSz1xor96pVtTM3OVe3_msN7mZ8LiCRKucaSCdeYwpcfN_gBPNKuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762120512</pqid></control><display><type>article</type><title>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maalawi, Karam Y.</creator><creatorcontrib>Maalawi, Karam Y.</creatorcontrib><description>This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2010.09.007</identifier><identifier>CODEN: COMSE2</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Applied sciences ; Buckling ; Buckling stability ; Composites ; Cylinders ; Exact sciences and technology ; External hydrostatic pressure ; External pressure ; Fibrous composites ; Forms of application and semi-finished materials ; Functionally graded material ; Fundamental areas of phenomenology (including applications) ; Grading ; Laminated rings/cylindrical shells ; Mathematical analysis ; Mathematical models ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Stability ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Structural optimization ; Technology of polymers ; Thin walled</subject><ispartof>Composite structures, 2011, Vol.93 (2), p.351-359</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</citedby><cites>FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2010.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23451088$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maalawi, Karam Y.</creatorcontrib><title>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</title><title>Composite structures</title><description>This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.</description><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Buckling</subject><subject>Buckling stability</subject><subject>Composites</subject><subject>Cylinders</subject><subject>Exact sciences and technology</subject><subject>External hydrostatic pressure</subject><subject>External pressure</subject><subject>Fibrous composites</subject><subject>Forms of application and semi-finished materials</subject><subject>Functionally graded material</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grading</subject><subject>Laminated rings/cylindrical shells</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Stability</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Structural optimization</subject><subject>Technology of polymers</subject><subject>Thin walled</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEkvhP_iC4JKtP-LYOULFl1SJSzlb3sl468WbLJ4EWn49jraCG_VlpPHzzjualzEuxVYK2V0etjAdTzSXBeatErUt-q0Q9gnbSGf7RgpnnrKNUJ1unFL6OXtBdBBCuFbKDfv9jZBPkR_DjCWFzPclDGnc8zgVjuNtGAEHvlvge167A1Laj6tgvk1j8yvkXL_XDSZKM_JSIbrMU0XhvioGLMSXtXC8qw5jdTgVJFoKvmTPYsiErx7qBbv5-OHm6nNz_fXTl6t31w20Us-N6xwYJ6VuLYKCXWcgml5Cq4MNbdSg0EJEubOuvh4M7lRU0mgYhB2svmBvzmNPZfqxIM3-mAgw5zDitJB3xnSus2Yl3_6XlLZTUgkjVUXdGYUyERWM_lTSMZR7L4Vfc_EH_y8Xv-biRe9rLlX6-sElEIQcSz1xor96pVtTM3OVe3_msN7mZ8LiCRKucaSCdeYwpcfN_gBPNKuc</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Maalawi, Karam Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</title><author>Maalawi, Karam Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Buckling</topic><topic>Buckling stability</topic><topic>Composites</topic><topic>Cylinders</topic><topic>Exact sciences and technology</topic><topic>External hydrostatic pressure</topic><topic>External pressure</topic><topic>Fibrous composites</topic><topic>Forms of application and semi-finished materials</topic><topic>Functionally graded material</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grading</topic><topic>Laminated rings/cylindrical shells</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Stability</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Structural optimization</topic><topic>Technology of polymers</topic><topic>Thin walled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maalawi, Karam Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maalawi, Karam Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</atitle><jtitle>Composite structures</jtitle><date>2011</date><risdate>2011</risdate><volume>93</volume><issue>2</issue><spage>351</spage><epage>359</epage><pages>351-359</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><coden>COMSE2</coden><abstract>This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2010.09.007</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2011, Vol.93 (2), p.351-359
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_855686757
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy
Applied sciences
Buckling
Buckling stability
Composites
Cylinders
Exact sciences and technology
External hydrostatic pressure
External pressure
Fibrous composites
Forms of application and semi-finished materials
Functionally graded material
Fundamental areas of phenomenology (including applications)
Grading
Laminated rings/cylindrical shells
Mathematical analysis
Mathematical models
Physics
Polymer industry, paints, wood
Solid mechanics
Stability
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Structural optimization
Technology of polymers
Thin walled
title Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20material%20grading%20for%20enhanced%20buckling%20design%20of%20thin-walled%20composite%20rings/long%20cylinders%20under%20external%20pressure&rft.jtitle=Composite%20structures&rft.au=Maalawi,%20Karam%20Y.&rft.date=2011&rft.volume=93&rft.issue=2&rft.spage=351&rft.epage=359&rft.pages=351-359&rft.issn=0263-8223&rft.eissn=1879-1085&rft.coden=COMSE2&rft_id=info:doi/10.1016/j.compstruct.2010.09.007&rft_dat=%3Cproquest_cross%3E855686757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762120512&rft_id=info:pmid/&rft_els_id=S0263822310003119&rfr_iscdi=true