Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure
This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume frac...
Gespeichert in:
Veröffentlicht in: | Composite structures 2011, Vol.93 (2), p.351-359 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 2 |
container_start_page | 351 |
container_title | Composite structures |
container_volume | 93 |
creator | Maalawi, Karam Y. |
description | This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits. |
doi_str_mv | 10.1016/j.compstruct.2010.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855686757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822310003119</els_id><sourcerecordid>855686757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhP_iC4JKtP-LYOULFl1SJSzlb3sl468WbLJ4EWn49jraCG_VlpPHzzjualzEuxVYK2V0etjAdTzSXBeatErUt-q0Q9gnbSGf7RgpnnrKNUJ1unFL6OXtBdBBCuFbKDfv9jZBPkR_DjCWFzPclDGnc8zgVjuNtGAEHvlvge167A1Laj6tgvk1j8yvkXL_XDSZKM_JSIbrMU0XhvioGLMSXtXC8qw5jdTgVJFoKvmTPYsiErx7qBbv5-OHm6nNz_fXTl6t31w20Us-N6xwYJ6VuLYKCXWcgml5Cq4MNbdSg0EJEubOuvh4M7lRU0mgYhB2svmBvzmNPZfqxIM3-mAgw5zDitJB3xnSus2Yl3_6XlLZTUgkjVUXdGYUyERWM_lTSMZR7L4Vfc_EH_y8Xv-biRe9rLlX6-sElEIQcSz1xor96pVtTM3OVe3_msN7mZ8LiCRKucaSCdeYwpcfN_gBPNKuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762120512</pqid></control><display><type>article</type><title>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maalawi, Karam Y.</creator><creatorcontrib>Maalawi, Karam Y.</creatorcontrib><description>This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2010.09.007</identifier><identifier>CODEN: COMSE2</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Applied sciences ; Buckling ; Buckling stability ; Composites ; Cylinders ; Exact sciences and technology ; External hydrostatic pressure ; External pressure ; Fibrous composites ; Forms of application and semi-finished materials ; Functionally graded material ; Fundamental areas of phenomenology (including applications) ; Grading ; Laminated rings/cylindrical shells ; Mathematical analysis ; Mathematical models ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Stability ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Structural optimization ; Technology of polymers ; Thin walled</subject><ispartof>Composite structures, 2011, Vol.93 (2), p.351-359</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</citedby><cites>FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2010.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23451088$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maalawi, Karam Y.</creatorcontrib><title>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</title><title>Composite structures</title><description>This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.</description><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Buckling</subject><subject>Buckling stability</subject><subject>Composites</subject><subject>Cylinders</subject><subject>Exact sciences and technology</subject><subject>External hydrostatic pressure</subject><subject>External pressure</subject><subject>Fibrous composites</subject><subject>Forms of application and semi-finished materials</subject><subject>Functionally graded material</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grading</subject><subject>Laminated rings/cylindrical shells</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Stability</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Structural optimization</subject><subject>Technology of polymers</subject><subject>Thin walled</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEkvhP_iC4JKtP-LYOULFl1SJSzlb3sl468WbLJ4EWn49jraCG_VlpPHzzjualzEuxVYK2V0etjAdTzSXBeatErUt-q0Q9gnbSGf7RgpnnrKNUJ1unFL6OXtBdBBCuFbKDfv9jZBPkR_DjCWFzPclDGnc8zgVjuNtGAEHvlvge167A1Laj6tgvk1j8yvkXL_XDSZKM_JSIbrMU0XhvioGLMSXtXC8qw5jdTgVJFoKvmTPYsiErx7qBbv5-OHm6nNz_fXTl6t31w20Us-N6xwYJ6VuLYKCXWcgml5Cq4MNbdSg0EJEubOuvh4M7lRU0mgYhB2svmBvzmNPZfqxIM3-mAgw5zDitJB3xnSus2Yl3_6XlLZTUgkjVUXdGYUyERWM_lTSMZR7L4Vfc_EH_y8Xv-biRe9rLlX6-sElEIQcSz1xor96pVtTM3OVe3_msN7mZ8LiCRKucaSCdeYwpcfN_gBPNKuc</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Maalawi, Karam Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</title><author>Maalawi, Karam Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-868c5811347ec2cb65cf591c43a7a4f3c2e7cfe1b788889c5eb2f2153cd07d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Buckling</topic><topic>Buckling stability</topic><topic>Composites</topic><topic>Cylinders</topic><topic>Exact sciences and technology</topic><topic>External hydrostatic pressure</topic><topic>External pressure</topic><topic>Fibrous composites</topic><topic>Forms of application and semi-finished materials</topic><topic>Functionally graded material</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grading</topic><topic>Laminated rings/cylindrical shells</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Stability</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Structural optimization</topic><topic>Technology of polymers</topic><topic>Thin walled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maalawi, Karam Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maalawi, Karam Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure</atitle><jtitle>Composite structures</jtitle><date>2011</date><risdate>2011</risdate><volume>93</volume><issue>2</issue><spage>351</spage><epage>359</epage><pages>351-359</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><coden>COMSE2</coden><abstract>This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2010.09.007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2011, Vol.93 (2), p.351-359 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_855686757 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anisotropy Applied sciences Buckling Buckling stability Composites Cylinders Exact sciences and technology External hydrostatic pressure External pressure Fibrous composites Forms of application and semi-finished materials Functionally graded material Fundamental areas of phenomenology (including applications) Grading Laminated rings/cylindrical shells Mathematical analysis Mathematical models Physics Polymer industry, paints, wood Solid mechanics Stability Static elasticity (thermoelasticity...) Structural and continuum mechanics Structural optimization Technology of polymers Thin walled |
title | Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20material%20grading%20for%20enhanced%20buckling%20design%20of%20thin-walled%20composite%20rings/long%20cylinders%20under%20external%20pressure&rft.jtitle=Composite%20structures&rft.au=Maalawi,%20Karam%20Y.&rft.date=2011&rft.volume=93&rft.issue=2&rft.spage=351&rft.epage=359&rft.pages=351-359&rft.issn=0263-8223&rft.eissn=1879-1085&rft.coden=COMSE2&rft_id=info:doi/10.1016/j.compstruct.2010.09.007&rft_dat=%3Cproquest_cross%3E855686757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762120512&rft_id=info:pmid/&rft_els_id=S0263822310003119&rfr_iscdi=true |