Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H₂O₂/UV-C process by using the capabilities of response surface methodology

Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H₂O₂/UV-C treatment. As a consequence of the considerable number of parameters affecting the H₂O₂/UV-C process, an experimental design methodology was used to mathematically desc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2011-01, Vol.185 (1), p.193-203
Hauptverfasser: Olmez-Hanci, Tugba, Arslan-Alaton, Idil, Basar, Gulcan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 193
container_title Journal of hazardous materials
container_volume 185
creator Olmez-Hanci, Tugba
Arslan-Alaton, Idil
Basar, Gulcan
description Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H₂O₂/UV-C treatment. As a consequence of the considerable number of parameters affecting the H₂O₂/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H₂O₂concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables “treatment time” (exerting a positive effect) and “initial COD content” (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable “initial H₂O₂ concentration” under the studied experimental conditions.
doi_str_mv 10.1016/j.jhazmat.2010.09.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855685145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770357773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-27a5c8415eff4becd1c92c0d8733e307f61a31eb85ecaedd1f73af283b82b2cb3</originalsourceid><addsrcrecordid>eNp9kcGO0zAURS0EEqXwCQhvECxIx47jxFmiimGQBs0CytZ6cZ5bV2lcbGegs5wf4p_4EjxtYcnC8tPVefdavoS85GzBGa8vtovtBu52kBYlyxprF4yrR2TGVSMKIUT9mMyYYFUhVFs9Jc9i3DLGeCOrGfn1eRqSu4XgICGFEYZDdJF6m2fnR2feUQPpOGWlp6M_yTThz-QGpHEKFkyCMdEe1wH6I01_uLShaYP06vf9_U0-F6tvxZLugzcYI-0OdIpuXB8RA3vo3OCSw2NywLj3Y_zrjXSHaeN7P_j14Tl5YmGI-OJ8z8nq8sPX5VVxffPx0_L9dWEqLlJRNiCNqrhEa6sOTc9NWxrW5x8RKFhjaw6CY6ckGsC-57YRYEslOlV2penEnLw5-eYXf58wJr1z0eAwwIh-ilpJWSvJK5nJt_8ledMwIZsmJ8-JPKEm-BgDWr0PbgfhoDnTD1XqrT5XqR-q1KzVucq89_ocAdHAYAOMxsV_y6VQvJWcZe7VibPgNaxDZlZfspHMdde1qpT4A9UKsUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770357773</pqid></control><display><type>article</type><title>Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H₂O₂/UV-C process by using the capabilities of response surface methodology</title><source>Access via ScienceDirect (Elsevier)</source><creator>Olmez-Hanci, Tugba ; Arslan-Alaton, Idil ; Basar, Gulcan</creator><creatorcontrib>Olmez-Hanci, Tugba ; Arslan-Alaton, Idil ; Basar, Gulcan</creatorcontrib><description>Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H₂O₂/UV-C treatment. As a consequence of the considerable number of parameters affecting the H₂O₂/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H₂O₂concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables “treatment time” (exerting a positive effect) and “initial COD content” (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable “initial H₂O₂ concentration” under the studied experimental conditions.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.09.018</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Carbon ; Cationic ; Chemical engineering ; chemical oxygen demand ; Crack opening displacement ; Exact sciences and technology ; experimental design ; hydrogen peroxide ; Mathematical analysis ; Mathematical models ; multivariate analysis ; Nonionic ; Oxidation ; photolysis ; pollutants ; Pollution ; Reactors ; regression analysis ; response surface methodology ; Surfactants ; Textiles ; ultraviolet radiation</subject><ispartof>Journal of hazardous materials, 2011-01, Vol.185 (1), p.193-203</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-27a5c8415eff4becd1c92c0d8733e307f61a31eb85ecaedd1f73af283b82b2cb3</citedby><cites>FETCH-LOGICAL-c413t-27a5c8415eff4becd1c92c0d8733e307f61a31eb85ecaedd1f73af283b82b2cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23819510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Olmez-Hanci, Tugba</creatorcontrib><creatorcontrib>Arslan-Alaton, Idil</creatorcontrib><creatorcontrib>Basar, Gulcan</creatorcontrib><title>Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H₂O₂/UV-C process by using the capabilities of response surface methodology</title><title>Journal of hazardous materials</title><description>Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H₂O₂/UV-C treatment. As a consequence of the considerable number of parameters affecting the H₂O₂/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H₂O₂concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables “treatment time” (exerting a positive effect) and “initial COD content” (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable “initial H₂O₂ concentration” under the studied experimental conditions.</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Cationic</subject><subject>Chemical engineering</subject><subject>chemical oxygen demand</subject><subject>Crack opening displacement</subject><subject>Exact sciences and technology</subject><subject>experimental design</subject><subject>hydrogen peroxide</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multivariate analysis</subject><subject>Nonionic</subject><subject>Oxidation</subject><subject>photolysis</subject><subject>pollutants</subject><subject>Pollution</subject><subject>Reactors</subject><subject>regression analysis</subject><subject>response surface methodology</subject><subject>Surfactants</subject><subject>Textiles</subject><subject>ultraviolet radiation</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kcGO0zAURS0EEqXwCQhvECxIx47jxFmiimGQBs0CytZ6cZ5bV2lcbGegs5wf4p_4EjxtYcnC8tPVefdavoS85GzBGa8vtovtBu52kBYlyxprF4yrR2TGVSMKIUT9mMyYYFUhVFs9Jc9i3DLGeCOrGfn1eRqSu4XgICGFEYZDdJF6m2fnR2feUQPpOGWlp6M_yTThz-QGpHEKFkyCMdEe1wH6I01_uLShaYP06vf9_U0-F6tvxZLugzcYI-0OdIpuXB8RA3vo3OCSw2NywLj3Y_zrjXSHaeN7P_j14Tl5YmGI-OJ8z8nq8sPX5VVxffPx0_L9dWEqLlJRNiCNqrhEa6sOTc9NWxrW5x8RKFhjaw6CY6ckGsC-57YRYEslOlV2penEnLw5-eYXf58wJr1z0eAwwIh-ilpJWSvJK5nJt_8ledMwIZsmJ8-JPKEm-BgDWr0PbgfhoDnTD1XqrT5XqR-q1KzVucq89_ocAdHAYAOMxsV_y6VQvJWcZe7VibPgNaxDZlZfspHMdde1qpT4A9UKsUw</recordid><startdate>20110115</startdate><enddate>20110115</enddate><creator>Olmez-Hanci, Tugba</creator><creator>Arslan-Alaton, Idil</creator><creator>Basar, Gulcan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20110115</creationdate><title>Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H₂O₂/UV-C process by using the capabilities of response surface methodology</title><author>Olmez-Hanci, Tugba ; Arslan-Alaton, Idil ; Basar, Gulcan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-27a5c8415eff4becd1c92c0d8733e307f61a31eb85ecaedd1f73af283b82b2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Cationic</topic><topic>Chemical engineering</topic><topic>chemical oxygen demand</topic><topic>Crack opening displacement</topic><topic>Exact sciences and technology</topic><topic>experimental design</topic><topic>hydrogen peroxide</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multivariate analysis</topic><topic>Nonionic</topic><topic>Oxidation</topic><topic>photolysis</topic><topic>pollutants</topic><topic>Pollution</topic><topic>Reactors</topic><topic>regression analysis</topic><topic>response surface methodology</topic><topic>Surfactants</topic><topic>Textiles</topic><topic>ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olmez-Hanci, Tugba</creatorcontrib><creatorcontrib>Arslan-Alaton, Idil</creatorcontrib><creatorcontrib>Basar, Gulcan</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olmez-Hanci, Tugba</au><au>Arslan-Alaton, Idil</au><au>Basar, Gulcan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H₂O₂/UV-C process by using the capabilities of response surface methodology</atitle><jtitle>Journal of hazardous materials</jtitle><date>2011-01-15</date><risdate>2011</risdate><volume>185</volume><issue>1</issue><spage>193</spage><epage>203</epage><pages>193-203</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H₂O₂/UV-C treatment. As a consequence of the considerable number of parameters affecting the H₂O₂/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H₂O₂concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables “treatment time” (exerting a positive effect) and “initial COD content” (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable “initial H₂O₂ concentration” under the studied experimental conditions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhazmat.2010.09.018</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-01, Vol.185 (1), p.193-203
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_855685145
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Carbon
Cationic
Chemical engineering
chemical oxygen demand
Crack opening displacement
Exact sciences and technology
experimental design
hydrogen peroxide
Mathematical analysis
Mathematical models
multivariate analysis
Nonionic
Oxidation
photolysis
pollutants
Pollution
Reactors
regression analysis
response surface methodology
Surfactants
Textiles
ultraviolet radiation
title Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H₂O₂/UV-C process by using the capabilities of response surface methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20analysis%20of%20anionic,%20cationic%20and%20nonionic%20textile%20surfactant%20degradation%20with%20the%20H%E2%82%82O%E2%82%82/UV-C%20process%20by%20using%20the%20capabilities%20of%20response%20surface%20methodology&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Olmez-Hanci,%20Tugba&rft.date=2011-01-15&rft.volume=185&rft.issue=1&rft.spage=193&rft.epage=203&rft.pages=193-203&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.09.018&rft_dat=%3Cproquest_cross%3E1770357773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770357773&rft_id=info:pmid/&rfr_iscdi=true