Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application
To overcome the chemically laborious stereo- and regioselective hydroxylation steps in the pharmaceutical production of corticosteroids and progestogens, certain fungal species, e.g. Rhizopus spp. and Aspergillus spp., are employed to perform the 11α-hydroxylation of the steroid skeleton, thereby si...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 2010-11, Vol.150 (3), p.428-437 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 3 |
container_start_page | 428 |
container_title | Journal of biotechnology |
container_volume | 150 |
creator | Petrič, Š. Hakki, T. Bernhardt, R. Žigon, D. Črešnar, B. |
description | To overcome the chemically laborious stereo- and regioselective hydroxylation steps in the pharmaceutical production of corticosteroids and progestogens, certain fungal species, e.g.
Rhizopus spp. and
Aspergillus spp., are employed to perform the 11α-hydroxylation of the steroid skeleton, thereby significantly simplifying steroid drug production. Here we report for the first time the identification and expression of a fungal 11α-steroid hydroxylase, CYP509C12. The newly identified cytochrome P450, which is one of the 48 putative CYP genes in
Rhizopus oryzae, was induced in the fungus by progesterone. By functionally expressing CYP509C12 in recombinant fission yeast, we were able to determine that its substrate spectrum includes progesterone as well as testosterone, 11-deoxycorticosterone, and 11-deoxycortisol, with the hydroxylations taking place predominantly at 11α and 6β positions of the steroid ring system. To increase the 11α-hydroxylation activity of CYP509C12 in recombinant fission yeast, its natural redox partner, the
R. oryzae NAD(P)H-dependent reductase, was coexpressed. The coexpression improved electron transfer to CYP509C12 and thus an increase in productivity from 246 to 300
μM
hydroxyPg
d
−1 was observed, as well as a 7-fold increase of rate of hydroxyprogesterone formation within the linear phase of transformation. This newly developed strain displayed total bioconversion of progesterone into 11α-hydroxyprogesterone and small amounts of 6β-hydroxyprogesterone within the first 6
h of incubation with progesterone as substrate, hence demonstrating its potential for biotechnological application. |
doi_str_mv | 10.1016/j.jbiotec.2010.09.928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855685071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165610018377</els_id><sourcerecordid>787046305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-1973e882921f525641a4d0d7a19733d18c6d3ae2f1b7630994458dbe765fb2b33</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhEQBvEKsM_k3sFarKX6VKSEDXlmPfdDzKxMHOVKRv1RfpM-FRhrLsypbvd33uPQeh15SsKaH1h-1624Y4gVszUt6IXmumnqAVVQ2vhKr5U7QqnKpoLesT9CLnLSFEaEmfoxNGlCRCyRWyn0J28QbSjGOHLc4TpBg8pvT-rtrMPsU_c28z4C7FHf6xCbdx3Gcc03xrAdvB4zBlvEyyGWIfr4OzPbbj2JfLFOLwEj3rbJ_h1fE8RVdfPv86_1Zdfv96cX52WTkhyVRR3XBQimlGO8lkLagVnvjGHgrcU-Vqzy2wjrZNzYnWQkjlW2hq2bWs5fwUvV_-HVP8vYc8mV1ZDfreDhD32Sgp67J1Qx8lG9UQUTRkIeVCuhRzTtCZMYWdTbOhxBxiMFtzjMEcYjBEmxJD6XtzVNi3O_APXf98L8C7I2Bz8atLdnAh_-e44ExpUri3C9fZaOx1KszVz6LECdWUMnJY--NCQPH2JkAy2QUYHPiQwE3Gx_DIsH8ByPKyLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787046305</pqid></control><display><type>article</type><title>Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Petrič, Š. ; Hakki, T. ; Bernhardt, R. ; Žigon, D. ; Črešnar, B.</creator><creatorcontrib>Petrič, Š. ; Hakki, T. ; Bernhardt, R. ; Žigon, D. ; Črešnar, B.</creatorcontrib><description>To overcome the chemically laborious stereo- and regioselective hydroxylation steps in the pharmaceutical production of corticosteroids and progestogens, certain fungal species, e.g.
Rhizopus spp. and
Aspergillus spp., are employed to perform the 11α-hydroxylation of the steroid skeleton, thereby significantly simplifying steroid drug production. Here we report for the first time the identification and expression of a fungal 11α-steroid hydroxylase, CYP509C12. The newly identified cytochrome P450, which is one of the 48 putative CYP genes in
Rhizopus oryzae, was induced in the fungus by progesterone. By functionally expressing CYP509C12 in recombinant fission yeast, we were able to determine that its substrate spectrum includes progesterone as well as testosterone, 11-deoxycorticosterone, and 11-deoxycortisol, with the hydroxylations taking place predominantly at 11α and 6β positions of the steroid ring system. To increase the 11α-hydroxylation activity of CYP509C12 in recombinant fission yeast, its natural redox partner, the
R. oryzae NAD(P)H-dependent reductase, was coexpressed. The coexpression improved electron transfer to CYP509C12 and thus an increase in productivity from 246 to 300
μM
hydroxyPg
d
−1 was observed, as well as a 7-fold increase of rate of hydroxyprogesterone formation within the linear phase of transformation. This newly developed strain displayed total bioconversion of progesterone into 11α-hydroxyprogesterone and small amounts of 6β-hydroxyprogesterone within the first 6
h of incubation with progesterone as substrate, hence demonstrating its potential for biotechnological application.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2010.09.928</identifier><identifier>PMID: 20850485</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>11α-Steroid hydroxylation ; Amino Acid Sequence ; Aspergillus ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Cluster Analysis ; Corticosteroids ; Cytochromes P450 ; Fundamental and applied biological sciences. Psychology ; Gene Expression - drug effects ; Heterologus expression ; Hydroxylation ; Molecular Sequence Data ; Phylogeny ; Progesterone - metabolism ; Progesterone - pharmacology ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rhizopus ; Rhizopus - enzymology ; Rhizopus - genetics ; Rhizopus oryzae ; Schizosaccharomyces ; Schizosaccharomyces pombe ; Sequence Alignment ; Steroid Hydroxylases - chemistry ; Steroid Hydroxylases - genetics ; Steroid Hydroxylases - metabolism</subject><ispartof>Journal of biotechnology, 2010-11, Vol.150 (3), p.428-437</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-1973e882921f525641a4d0d7a19733d18c6d3ae2f1b7630994458dbe765fb2b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiotec.2010.09.928$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23432890$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20850485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrič, Š.</creatorcontrib><creatorcontrib>Hakki, T.</creatorcontrib><creatorcontrib>Bernhardt, R.</creatorcontrib><creatorcontrib>Žigon, D.</creatorcontrib><creatorcontrib>Črešnar, B.</creatorcontrib><title>Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>To overcome the chemically laborious stereo- and regioselective hydroxylation steps in the pharmaceutical production of corticosteroids and progestogens, certain fungal species, e.g.
Rhizopus spp. and
Aspergillus spp., are employed to perform the 11α-hydroxylation of the steroid skeleton, thereby significantly simplifying steroid drug production. Here we report for the first time the identification and expression of a fungal 11α-steroid hydroxylase, CYP509C12. The newly identified cytochrome P450, which is one of the 48 putative CYP genes in
Rhizopus oryzae, was induced in the fungus by progesterone. By functionally expressing CYP509C12 in recombinant fission yeast, we were able to determine that its substrate spectrum includes progesterone as well as testosterone, 11-deoxycorticosterone, and 11-deoxycortisol, with the hydroxylations taking place predominantly at 11α and 6β positions of the steroid ring system. To increase the 11α-hydroxylation activity of CYP509C12 in recombinant fission yeast, its natural redox partner, the
R. oryzae NAD(P)H-dependent reductase, was coexpressed. The coexpression improved electron transfer to CYP509C12 and thus an increase in productivity from 246 to 300
μM
hydroxyPg
d
−1 was observed, as well as a 7-fold increase of rate of hydroxyprogesterone formation within the linear phase of transformation. This newly developed strain displayed total bioconversion of progesterone into 11α-hydroxyprogesterone and small amounts of 6β-hydroxyprogesterone within the first 6
h of incubation with progesterone as substrate, hence demonstrating its potential for biotechnological application.</description><subject>11α-Steroid hydroxylation</subject><subject>Amino Acid Sequence</subject><subject>Aspergillus</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Cluster Analysis</subject><subject>Corticosteroids</subject><subject>Cytochromes P450</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression - drug effects</subject><subject>Heterologus expression</subject><subject>Hydroxylation</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Progesterone - metabolism</subject><subject>Progesterone - pharmacology</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rhizopus</subject><subject>Rhizopus - enzymology</subject><subject>Rhizopus - genetics</subject><subject>Rhizopus oryzae</subject><subject>Schizosaccharomyces</subject><subject>Schizosaccharomyces pombe</subject><subject>Sequence Alignment</subject><subject>Steroid Hydroxylases - chemistry</subject><subject>Steroid Hydroxylases - genetics</subject><subject>Steroid Hydroxylases - metabolism</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPhEQBvEKsM_k3sFarKX6VKSEDXlmPfdDzKxMHOVKRv1RfpM-FRhrLsypbvd33uPQeh15SsKaH1h-1624Y4gVszUt6IXmumnqAVVQ2vhKr5U7QqnKpoLesT9CLnLSFEaEmfoxNGlCRCyRWyn0J28QbSjGOHLc4TpBg8pvT-rtrMPsU_c28z4C7FHf6xCbdx3Gcc03xrAdvB4zBlvEyyGWIfr4OzPbbj2JfLFOLwEj3rbJ_h1fE8RVdfPv86_1Zdfv96cX52WTkhyVRR3XBQimlGO8lkLagVnvjGHgrcU-Vqzy2wjrZNzYnWQkjlW2hq2bWs5fwUvV_-HVP8vYc8mV1ZDfreDhD32Sgp67J1Qx8lG9UQUTRkIeVCuhRzTtCZMYWdTbOhxBxiMFtzjMEcYjBEmxJD6XtzVNi3O_APXf98L8C7I2Bz8atLdnAh_-e44ExpUri3C9fZaOx1KszVz6LECdWUMnJY--NCQPH2JkAy2QUYHPiQwE3Gx_DIsH8ByPKyLw</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Petrič, Š.</creator><creator>Hakki, T.</creator><creator>Bernhardt, R.</creator><creator>Žigon, D.</creator><creator>Črešnar, B.</creator><general>Elsevier B.V</general><general>[New York, NY]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20101101</creationdate><title>Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application</title><author>Petrič, Š. ; Hakki, T. ; Bernhardt, R. ; Žigon, D. ; Črešnar, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-1973e882921f525641a4d0d7a19733d18c6d3ae2f1b7630994458dbe765fb2b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>11α-Steroid hydroxylation</topic><topic>Amino Acid Sequence</topic><topic>Aspergillus</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Cluster Analysis</topic><topic>Corticosteroids</topic><topic>Cytochromes P450</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression - drug effects</topic><topic>Heterologus expression</topic><topic>Hydroxylation</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Progesterone - metabolism</topic><topic>Progesterone - pharmacology</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rhizopus</topic><topic>Rhizopus - enzymology</topic><topic>Rhizopus - genetics</topic><topic>Rhizopus oryzae</topic><topic>Schizosaccharomyces</topic><topic>Schizosaccharomyces pombe</topic><topic>Sequence Alignment</topic><topic>Steroid Hydroxylases - chemistry</topic><topic>Steroid Hydroxylases - genetics</topic><topic>Steroid Hydroxylases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrič, Š.</creatorcontrib><creatorcontrib>Hakki, T.</creatorcontrib><creatorcontrib>Bernhardt, R.</creatorcontrib><creatorcontrib>Žigon, D.</creatorcontrib><creatorcontrib>Črešnar, B.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrič, Š.</au><au>Hakki, T.</au><au>Bernhardt, R.</au><au>Žigon, D.</au><au>Črešnar, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>150</volume><issue>3</issue><spage>428</spage><epage>437</epage><pages>428-437</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>To overcome the chemically laborious stereo- and regioselective hydroxylation steps in the pharmaceutical production of corticosteroids and progestogens, certain fungal species, e.g.
Rhizopus spp. and
Aspergillus spp., are employed to perform the 11α-hydroxylation of the steroid skeleton, thereby significantly simplifying steroid drug production. Here we report for the first time the identification and expression of a fungal 11α-steroid hydroxylase, CYP509C12. The newly identified cytochrome P450, which is one of the 48 putative CYP genes in
Rhizopus oryzae, was induced in the fungus by progesterone. By functionally expressing CYP509C12 in recombinant fission yeast, we were able to determine that its substrate spectrum includes progesterone as well as testosterone, 11-deoxycorticosterone, and 11-deoxycortisol, with the hydroxylations taking place predominantly at 11α and 6β positions of the steroid ring system. To increase the 11α-hydroxylation activity of CYP509C12 in recombinant fission yeast, its natural redox partner, the
R. oryzae NAD(P)H-dependent reductase, was coexpressed. The coexpression improved electron transfer to CYP509C12 and thus an increase in productivity from 246 to 300
μM
hydroxyPg
d
−1 was observed, as well as a 7-fold increase of rate of hydroxyprogesterone formation within the linear phase of transformation. This newly developed strain displayed total bioconversion of progesterone into 11α-hydroxyprogesterone and small amounts of 6β-hydroxyprogesterone within the first 6
h of incubation with progesterone as substrate, hence demonstrating its potential for biotechnological application.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20850485</pmid><doi>10.1016/j.jbiotec.2010.09.928</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1656 |
ispartof | Journal of biotechnology, 2010-11, Vol.150 (3), p.428-437 |
issn | 0168-1656 1873-4863 |
language | eng |
recordid | cdi_proquest_miscellaneous_855685071 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | 11α-Steroid hydroxylation Amino Acid Sequence Aspergillus Biological and medical sciences Biotechnology Biotechnology - methods Cluster Analysis Corticosteroids Cytochromes P450 Fundamental and applied biological sciences. Psychology Gene Expression - drug effects Heterologus expression Hydroxylation Molecular Sequence Data Phylogeny Progesterone - metabolism Progesterone - pharmacology Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Rhizopus Rhizopus - enzymology Rhizopus - genetics Rhizopus oryzae Schizosaccharomyces Schizosaccharomyces pombe Sequence Alignment Steroid Hydroxylases - chemistry Steroid Hydroxylases - genetics Steroid Hydroxylases - metabolism |
title | Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20a%20steroid%2011%CE%B1-hydroxylase%20from%20Rhizopus%20oryzae%20and%20its%20biotechnological%20application&rft.jtitle=Journal%20of%20biotechnology&rft.au=Petri%C4%8D,%20%C5%A0.&rft.date=2010-11-01&rft.volume=150&rft.issue=3&rft.spage=428&rft.epage=437&rft.pages=428-437&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/j.jbiotec.2010.09.928&rft_dat=%3Cproquest_cross%3E787046305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787046305&rft_id=info:pmid/20850485&rft_els_id=S0168165610018377&rfr_iscdi=true |