Bayesian adaptive combination of short-term wind speed forecasts from neural network models

Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2011, Vol.36 (1), p.352-359
Hauptverfasser: Li, Gong, Shi, Jing, Zhou, Junyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 1
container_start_page 352
container_title Renewable energy
container_volume 36
creator Li, Gong
Shi, Jing
Zhou, Junyi
description Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.
doi_str_mv 10.1016/j.renene.2010.06.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855682650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148110003228</els_id><sourcerecordid>1770331173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoNY8Nr6DwSzEd3MbTL5nI1gi1ah0IV25SJkkhPNdWZyTXJb-u_NZUqXJYsD4TnvOTwHobeUbCmh8ny3zbC0t-1J-yJyS_jwAm2oVkNHpO5fog0ZJOko1_QVel3KjhAqtOIb9OvCPkCJdsHW232Nd4Bdmse42BrTglPA5U_KtauQZ3wfF4_LHsDjkDI4W2rBIacZL3DIdmql3qf8F8_Jw1TO0EmwU4E3j_UU3X798vPyW3d9c_X98vN153gvaqe4Z4ELPQo2Ou5GPwoHvSQ8KM1lT8PQK-WHQfcjGzkMHoJVTmnRAK-FZ6fow5q7z-nfAUo1cywOpskukA7FaCGaBClIIz8-S1KlCGOUKtZQvqIup1IyBLPPcbb5wVBijtbNzqzWzdG6IdI0663t_eMEW5ydQraLi-Wpt2d9O4rWjXu3csEmY3_nxtz-aEGCEKIkE8ekTyvRTMJdhGyKi7A48LGpr8an-Pwq_wFQTKQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770331173</pqid></control><display><type>article</type><title>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Gong ; Shi, Jing ; Zhou, Junyi</creator><creatorcontrib>Li, Gong ; Shi, Jing ; Zhou, Junyi</creatorcontrib><description>Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2010.06.049</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptive linear element ; algorithms ; Applied sciences ; Back propagation ; Bayesian analysis ; Bayesian combination ; Bayesian theory ; Energy ; Exact sciences and technology ; Forecasting ; Mathematical models ; Methodology ; Natural energy ; Networks ; Neural network ; Neural networks ; prediction ; Radial basis function ; Wind energy ; wind farms ; Wind power generation ; Wind speed ; Wind speed forecasting</subject><ispartof>Renewable energy, 2011, Vol.36 (1), p.352-359</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</citedby><cites>FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148110003228$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23287988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Zhou, Junyi</creatorcontrib><title>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</title><title>Renewable energy</title><description>Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.</description><subject>Adaptive linear element</subject><subject>algorithms</subject><subject>Applied sciences</subject><subject>Back propagation</subject><subject>Bayesian analysis</subject><subject>Bayesian combination</subject><subject>Bayesian theory</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Natural energy</subject><subject>Networks</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>prediction</subject><subject>Radial basis function</subject><subject>Wind energy</subject><subject>wind farms</subject><subject>Wind power generation</subject><subject>Wind speed</subject><subject>Wind speed forecasting</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoNY8Nr6DwSzEd3MbTL5nI1gi1ah0IV25SJkkhPNdWZyTXJb-u_NZUqXJYsD4TnvOTwHobeUbCmh8ny3zbC0t-1J-yJyS_jwAm2oVkNHpO5fog0ZJOko1_QVel3KjhAqtOIb9OvCPkCJdsHW232Nd4Bdmse42BrTglPA5U_KtauQZ3wfF4_LHsDjkDI4W2rBIacZL3DIdmql3qf8F8_Jw1TO0EmwU4E3j_UU3X798vPyW3d9c_X98vN153gvaqe4Z4ELPQo2Ou5GPwoHvSQ8KM1lT8PQK-WHQfcjGzkMHoJVTmnRAK-FZ6fow5q7z-nfAUo1cywOpskukA7FaCGaBClIIz8-S1KlCGOUKtZQvqIup1IyBLPPcbb5wVBijtbNzqzWzdG6IdI0663t_eMEW5ydQraLi-Wpt2d9O4rWjXu3csEmY3_nxtz-aEGCEKIkE8ekTyvRTMJdhGyKi7A48LGpr8an-Pwq_wFQTKQo</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Li, Gong</creator><creator>Shi, Jing</creator><creator>Zhou, Junyi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>2011</creationdate><title>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</title><author>Li, Gong ; Shi, Jing ; Zhou, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive linear element</topic><topic>algorithms</topic><topic>Applied sciences</topic><topic>Back propagation</topic><topic>Bayesian analysis</topic><topic>Bayesian combination</topic><topic>Bayesian theory</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Natural energy</topic><topic>Networks</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>prediction</topic><topic>Radial basis function</topic><topic>Wind energy</topic><topic>wind farms</topic><topic>Wind power generation</topic><topic>Wind speed</topic><topic>Wind speed forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Zhou, Junyi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gong</au><au>Shi, Jing</au><au>Zhou, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</atitle><jtitle>Renewable energy</jtitle><date>2011</date><risdate>2011</risdate><volume>36</volume><issue>1</issue><spage>352</spage><epage>359</epage><pages>352-359</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2010.06.049</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2011, Vol.36 (1), p.352-359
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_855682650
source Elsevier ScienceDirect Journals Complete
subjects Adaptive linear element
algorithms
Applied sciences
Back propagation
Bayesian analysis
Bayesian combination
Bayesian theory
Energy
Exact sciences and technology
Forecasting
Mathematical models
Methodology
Natural energy
Networks
Neural network
Neural networks
prediction
Radial basis function
Wind energy
wind farms
Wind power generation
Wind speed
Wind speed forecasting
title Bayesian adaptive combination of short-term wind speed forecasts from neural network models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T12%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20adaptive%20combination%20of%20short-term%20wind%20speed%20forecasts%20from%20neural%20network%20models&rft.jtitle=Renewable%20energy&rft.au=Li,%20Gong&rft.date=2011&rft.volume=36&rft.issue=1&rft.spage=352&rft.epage=359&rft.pages=352-359&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2010.06.049&rft_dat=%3Cproquest_cross%3E1770331173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770331173&rft_id=info:pmid/&rft_els_id=S0960148110003228&rfr_iscdi=true