Bayesian adaptive combination of short-term wind speed forecasts from neural network models
Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from tim...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2011, Vol.36 (1), p.352-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 1 |
container_start_page | 352 |
container_title | Renewable energy |
container_volume | 36 |
creator | Li, Gong Shi, Jing Zhou, Junyi |
description | Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting. |
doi_str_mv | 10.1016/j.renene.2010.06.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855682650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148110003228</els_id><sourcerecordid>1770331173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoNY8Nr6DwSzEd3MbTL5nI1gi1ah0IV25SJkkhPNdWZyTXJb-u_NZUqXJYsD4TnvOTwHobeUbCmh8ny3zbC0t-1J-yJyS_jwAm2oVkNHpO5fog0ZJOko1_QVel3KjhAqtOIb9OvCPkCJdsHW232Nd4Bdmse42BrTglPA5U_KtauQZ3wfF4_LHsDjkDI4W2rBIacZL3DIdmql3qf8F8_Jw1TO0EmwU4E3j_UU3X798vPyW3d9c_X98vN153gvaqe4Z4ELPQo2Ou5GPwoHvSQ8KM1lT8PQK-WHQfcjGzkMHoJVTmnRAK-FZ6fow5q7z-nfAUo1cywOpskukA7FaCGaBClIIz8-S1KlCGOUKtZQvqIup1IyBLPPcbb5wVBijtbNzqzWzdG6IdI0663t_eMEW5ydQraLi-Wpt2d9O4rWjXu3csEmY3_nxtz-aEGCEKIkE8ekTyvRTMJdhGyKi7A48LGpr8an-Pwq_wFQTKQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770331173</pqid></control><display><type>article</type><title>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Gong ; Shi, Jing ; Zhou, Junyi</creator><creatorcontrib>Li, Gong ; Shi, Jing ; Zhou, Junyi</creatorcontrib><description>Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2010.06.049</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptive linear element ; algorithms ; Applied sciences ; Back propagation ; Bayesian analysis ; Bayesian combination ; Bayesian theory ; Energy ; Exact sciences and technology ; Forecasting ; Mathematical models ; Methodology ; Natural energy ; Networks ; Neural network ; Neural networks ; prediction ; Radial basis function ; Wind energy ; wind farms ; Wind power generation ; Wind speed ; Wind speed forecasting</subject><ispartof>Renewable energy, 2011, Vol.36 (1), p.352-359</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</citedby><cites>FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148110003228$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23287988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Zhou, Junyi</creatorcontrib><title>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</title><title>Renewable energy</title><description>Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.</description><subject>Adaptive linear element</subject><subject>algorithms</subject><subject>Applied sciences</subject><subject>Back propagation</subject><subject>Bayesian analysis</subject><subject>Bayesian combination</subject><subject>Bayesian theory</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Natural energy</subject><subject>Networks</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>prediction</subject><subject>Radial basis function</subject><subject>Wind energy</subject><subject>wind farms</subject><subject>Wind power generation</subject><subject>Wind speed</subject><subject>Wind speed forecasting</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoNY8Nr6DwSzEd3MbTL5nI1gi1ah0IV25SJkkhPNdWZyTXJb-u_NZUqXJYsD4TnvOTwHobeUbCmh8ny3zbC0t-1J-yJyS_jwAm2oVkNHpO5fog0ZJOko1_QVel3KjhAqtOIb9OvCPkCJdsHW232Nd4Bdmse42BrTglPA5U_KtauQZ3wfF4_LHsDjkDI4W2rBIacZL3DIdmql3qf8F8_Jw1TO0EmwU4E3j_UU3X798vPyW3d9c_X98vN153gvaqe4Z4ELPQo2Ou5GPwoHvSQ8KM1lT8PQK-WHQfcjGzkMHoJVTmnRAK-FZ6fow5q7z-nfAUo1cywOpskukA7FaCGaBClIIz8-S1KlCGOUKtZQvqIup1IyBLPPcbb5wVBijtbNzqzWzdG6IdI0663t_eMEW5ydQraLi-Wpt2d9O4rWjXu3csEmY3_nxtz-aEGCEKIkE8ekTyvRTMJdhGyKi7A48LGpr8an-Pwq_wFQTKQo</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Li, Gong</creator><creator>Shi, Jing</creator><creator>Zhou, Junyi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>2011</creationdate><title>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</title><author>Li, Gong ; Shi, Jing ; Zhou, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-74d3f458b53bc4cbdb5ce2604f784621f9277d9982b3b4e9defa7c7854f7d85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive linear element</topic><topic>algorithms</topic><topic>Applied sciences</topic><topic>Back propagation</topic><topic>Bayesian analysis</topic><topic>Bayesian combination</topic><topic>Bayesian theory</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Natural energy</topic><topic>Networks</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>prediction</topic><topic>Radial basis function</topic><topic>Wind energy</topic><topic>wind farms</topic><topic>Wind power generation</topic><topic>Wind speed</topic><topic>Wind speed forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Zhou, Junyi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gong</au><au>Shi, Jing</au><au>Zhou, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian adaptive combination of short-term wind speed forecasts from neural network models</atitle><jtitle>Renewable energy</jtitle><date>2011</date><risdate>2011</risdate><volume>36</volume><issue>1</issue><spage>352</spage><epage>359</epage><pages>352-359</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2010.06.049</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2011, Vol.36 (1), p.352-359 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_855682650 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adaptive linear element algorithms Applied sciences Back propagation Bayesian analysis Bayesian combination Bayesian theory Energy Exact sciences and technology Forecasting Mathematical models Methodology Natural energy Networks Neural network Neural networks prediction Radial basis function Wind energy wind farms Wind power generation Wind speed Wind speed forecasting |
title | Bayesian adaptive combination of short-term wind speed forecasts from neural network models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T12%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20adaptive%20combination%20of%20short-term%20wind%20speed%20forecasts%20from%20neural%20network%20models&rft.jtitle=Renewable%20energy&rft.au=Li,%20Gong&rft.date=2011&rft.volume=36&rft.issue=1&rft.spage=352&rft.epage=359&rft.pages=352-359&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2010.06.049&rft_dat=%3Cproquest_cross%3E1770331173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770331173&rft_id=info:pmid/&rft_els_id=S0960148110003228&rfr_iscdi=true |