Electronic structure of the iron-based superconductor LaOFeP
Superconductivity: 'itinerant' oxypnictides The discovery of superconductivity in the iron-based layered compounds known as iron oxypnictides has renewed interest in high-temperature superconductivity. Two distinct classes of theories about the nature of the ground state of the oxypnictide...
Gespeichert in:
Veröffentlicht in: | Nature 2008-09, Vol.455 (7209), p.81-84 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 7209 |
container_start_page | 81 |
container_title | Nature |
container_volume | 455 |
creator | Lu, D. H. Yi, M. Mo, S.-K. Erickson, A. S. Analytis, J. Chu, J.-H. Singh, D. J. Hussain, Z. Geballe, T. H. Fisher, I. R. Shen, Z.-X. |
description | Superconductivity: 'itinerant' oxypnictides
The discovery of superconductivity in the iron-based layered compounds known as iron oxypnictides has renewed interest in high-temperature superconductivity. Two distinct classes of theories about the nature of the ground state of the oxypnictides have been put forward, characterized by contrasting underlying band structures. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Now Lu
et al
. report angle-resolved photoemission spectroscopy (ARPES) of an iron oxypnictide, LaOFeP, with a pretty high critical temperature of
T
c
= 5.9 K. Their results favour an 'itinerant' ground state, over one resembling the 'Mott insulator' state found in copper oxide superconductors.
Angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (
T
c
= 5.9 K) is reported. These results favour the itinerant ground state, albeit with band renormalization. In addition, the data reveal important differences between these and copper-based superconductors.
The recent discovery of superconductivity in the iron oxypnictide family of compounds
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs
10
,
11
) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach
12
,
13
,
14
,
15
,
16
,
17
, and an itinerant ground state in the weak-coupling approach
18
,
19
,
20
,
21
,
22
. The first approach stresses on-site correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature,
T
c
= 5.9 K), the first-reported iron-based superconductor
2
. Our results favour the itinerant ground state |
doi_str_mv | 10.1038/nature07263 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_855679302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188944544</galeid><sourcerecordid>A188944544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c782t-ce8435f66bc18ce449d49b722bcc5198e620b1601bb0d9375f36c777568921c83</originalsourceid><addsrcrecordid>eNqF0l1rFDEUBuAgiq2rV97LIPiFTs13MuDNsrRaWKxoxcshkzmzTZmdbJMM6L83yy7dLqyVuRhInrxJzglCzwk-IZjpj4NJYwCsqGQP0DHhSpZcavUQHWNMdYk1k0foSYzXGGNBFH-MjohWsuJMHKNPpz3YFPzgbBFTGO06q_Bdka6gcHm8bEyEtojjCoL1Q5uFD8XcXJzBt6foUWf6CM-2_wn6eXZ6OftSzi8-n8-m89IqTVNpQee9OikbS7QFzquWV42itLFWkEqDpLghEpOmwW3FlOiYtEopIXVFidVsgl5ucn1Mro7WJbBX-TBDPnqda0AFWaM3G7QK_maEmOqlixb63gzgx1hrIaSqGKb_lYrnRKm5yPL1vVJWgjBK1pFv74VECSa4JkLtLnNLr_0Yhly_mmIuuKjk-jLlBi1MD7UbOp-CsQsYIJjeD9C5PDwlWlc8L-G70D1vV-6mvotODqD8tbB09mDqu70F2ST4nRZmjLE-__F9377_t51e_pp9Paht8DEG6OpVcEsT_uR2rjuq6zuvOusX25KNzRLand0-4wxebYGJ1vRdMIN18dZRLBkRuVUT9GHjYp4aFhB2tT-0719orAen</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204545968</pqid></control><display><type>article</type><title>Electronic structure of the iron-based superconductor LaOFeP</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, D. H. ; Yi, M. ; Mo, S.-K. ; Erickson, A. S. ; Analytis, J. ; Chu, J.-H. ; Singh, D. J. ; Hussain, Z. ; Geballe, T. H. ; Fisher, I. R. ; Shen, Z.-X.</creator><creatorcontrib>Lu, D. H. ; Yi, M. ; Mo, S.-K. ; Erickson, A. S. ; Analytis, J. ; Chu, J.-H. ; Singh, D. J. ; Hussain, Z. ; Geballe, T. H. ; Fisher, I. R. ; Shen, Z.-X. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Superconductivity: 'itinerant' oxypnictides
The discovery of superconductivity in the iron-based layered compounds known as iron oxypnictides has renewed interest in high-temperature superconductivity. Two distinct classes of theories about the nature of the ground state of the oxypnictides have been put forward, characterized by contrasting underlying band structures. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Now Lu
et al
. report angle-resolved photoemission spectroscopy (ARPES) of an iron oxypnictide, LaOFeP, with a pretty high critical temperature of
T
c
= 5.9 K. Their results favour an 'itinerant' ground state, over one resembling the 'Mott insulator' state found in copper oxide superconductors.
Angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (
T
c
= 5.9 K) is reported. These results favour the itinerant ground state, albeit with band renormalization. In addition, the data reveal important differences between these and copper-based superconductors.
The recent discovery of superconductivity in the iron oxypnictide family of compounds
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs
10
,
11
) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach
12
,
13
,
14
,
15
,
16
,
17
, and an itinerant ground state in the weak-coupling approach
18
,
19
,
20
,
21
,
22
. The first approach stresses on-site correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature,
T
c
= 5.9 K), the first-reported iron-based superconductor
2
. Our results favour the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper-based superconductors.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature07263</identifier><identifier>PMID: 18769435</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Antiferromagnetism ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Copper ; COPPER OXIDE ; Copper oxide superconductors ; COPPER OXIDES ; Dispersion ; ELECTRICAL CONDUCTIVITY ; ELECTRONIC STRUCTURE ; Electronics ; Exact sciences and technology ; Ferromagnetism ; FLUCTUATIONS ; Ground state ; GROUND STATES ; Humanities and Social Sciences ; IRON ; Iron compounds ; letter ; MAGNETIC PROPERTIES ; Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) ; multidisciplinary ; OXIDES ; PHOTOEMISSION ; Physics ; Properties of type I and type II superconductors ; RENORMALIZATION ; Science ; Science (multidisciplinary) ; Similarity ; Single crystals ; SPECTROSCOPY ; Spectrum analysis ; STRESSES ; Superconducting materials (excluding high-tc compounds) ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; TRANSITION TEMPERATURE ; Transition temperatures</subject><ispartof>Nature, 2008-09, Vol.455 (7209), p.81-84</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 4, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c782t-ce8435f66bc18ce449d49b722bcc5198e620b1601bb0d9375f36c777568921c83</citedby><cites>FETCH-LOGICAL-c782t-ce8435f66bc18ce449d49b722bcc5198e620b1601bb0d9375f36c777568921c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature07263$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature07263$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20631551$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18769435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1032518$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, D. H.</creatorcontrib><creatorcontrib>Yi, M.</creatorcontrib><creatorcontrib>Mo, S.-K.</creatorcontrib><creatorcontrib>Erickson, A. S.</creatorcontrib><creatorcontrib>Analytis, J.</creatorcontrib><creatorcontrib>Chu, J.-H.</creatorcontrib><creatorcontrib>Singh, D. J.</creatorcontrib><creatorcontrib>Hussain, Z.</creatorcontrib><creatorcontrib>Geballe, T. H.</creatorcontrib><creatorcontrib>Fisher, I. R.</creatorcontrib><creatorcontrib>Shen, Z.-X.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Electronic structure of the iron-based superconductor LaOFeP</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Superconductivity: 'itinerant' oxypnictides
The discovery of superconductivity in the iron-based layered compounds known as iron oxypnictides has renewed interest in high-temperature superconductivity. Two distinct classes of theories about the nature of the ground state of the oxypnictides have been put forward, characterized by contrasting underlying band structures. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Now Lu
et al
. report angle-resolved photoemission spectroscopy (ARPES) of an iron oxypnictide, LaOFeP, with a pretty high critical temperature of
T
c
= 5.9 K. Their results favour an 'itinerant' ground state, over one resembling the 'Mott insulator' state found in copper oxide superconductors.
Angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (
T
c
= 5.9 K) is reported. These results favour the itinerant ground state, albeit with band renormalization. In addition, the data reveal important differences between these and copper-based superconductors.
The recent discovery of superconductivity in the iron oxypnictide family of compounds
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs
10
,
11
) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach
12
,
13
,
14
,
15
,
16
,
17
, and an itinerant ground state in the weak-coupling approach
18
,
19
,
20
,
21
,
22
. The first approach stresses on-site correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature,
T
c
= 5.9 K), the first-reported iron-based superconductor
2
. Our results favour the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper-based superconductors.</description><subject>Antiferromagnetism</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Copper</subject><subject>COPPER OXIDE</subject><subject>Copper oxide superconductors</subject><subject>COPPER OXIDES</subject><subject>Dispersion</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>FLUCTUATIONS</subject><subject>Ground state</subject><subject>GROUND STATES</subject><subject>Humanities and Social Sciences</subject><subject>IRON</subject><subject>Iron compounds</subject><subject>letter</subject><subject>MAGNETIC PROPERTIES</subject><subject>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</subject><subject>multidisciplinary</subject><subject>OXIDES</subject><subject>PHOTOEMISSION</subject><subject>Physics</subject><subject>Properties of type I and type II superconductors</subject><subject>RENORMALIZATION</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Similarity</subject><subject>Single crystals</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>STRESSES</subject><subject>Superconducting materials (excluding high-tc compounds)</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>TRANSITION TEMPERATURE</subject><subject>Transition temperatures</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0l1rFDEUBuAgiq2rV97LIPiFTs13MuDNsrRaWKxoxcshkzmzTZmdbJMM6L83yy7dLqyVuRhInrxJzglCzwk-IZjpj4NJYwCsqGQP0DHhSpZcavUQHWNMdYk1k0foSYzXGGNBFH-MjohWsuJMHKNPpz3YFPzgbBFTGO06q_Bdka6gcHm8bEyEtojjCoL1Q5uFD8XcXJzBt6foUWf6CM-2_wn6eXZ6OftSzi8-n8-m89IqTVNpQee9OikbS7QFzquWV42itLFWkEqDpLghEpOmwW3FlOiYtEopIXVFidVsgl5ucn1Mro7WJbBX-TBDPnqda0AFWaM3G7QK_maEmOqlixb63gzgx1hrIaSqGKb_lYrnRKm5yPL1vVJWgjBK1pFv74VECSa4JkLtLnNLr_0Yhly_mmIuuKjk-jLlBi1MD7UbOp-CsQsYIJjeD9C5PDwlWlc8L-G70D1vV-6mvotODqD8tbB09mDqu70F2ST4nRZmjLE-__F9377_t51e_pp9Paht8DEG6OpVcEsT_uR2rjuq6zuvOusX25KNzRLand0-4wxebYGJ1vRdMIN18dZRLBkRuVUT9GHjYp4aFhB2tT-0719orAen</recordid><startdate>20080904</startdate><enddate>20080904</enddate><creator>Lu, D. H.</creator><creator>Yi, M.</creator><creator>Mo, S.-K.</creator><creator>Erickson, A. S.</creator><creator>Analytis, J.</creator><creator>Chu, J.-H.</creator><creator>Singh, D. J.</creator><creator>Hussain, Z.</creator><creator>Geballe, T. H.</creator><creator>Fisher, I. R.</creator><creator>Shen, Z.-X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20080904</creationdate><title>Electronic structure of the iron-based superconductor LaOFeP</title><author>Lu, D. H. ; Yi, M. ; Mo, S.-K. ; Erickson, A. S. ; Analytis, J. ; Chu, J.-H. ; Singh, D. J. ; Hussain, Z. ; Geballe, T. H. ; Fisher, I. R. ; Shen, Z.-X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c782t-ce8435f66bc18ce449d49b722bcc5198e620b1601bb0d9375f36c777568921c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Antiferromagnetism</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Copper</topic><topic>COPPER OXIDE</topic><topic>Copper oxide superconductors</topic><topic>COPPER OXIDES</topic><topic>Dispersion</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>FLUCTUATIONS</topic><topic>Ground state</topic><topic>GROUND STATES</topic><topic>Humanities and Social Sciences</topic><topic>IRON</topic><topic>Iron compounds</topic><topic>letter</topic><topic>MAGNETIC PROPERTIES</topic><topic>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</topic><topic>multidisciplinary</topic><topic>OXIDES</topic><topic>PHOTOEMISSION</topic><topic>Physics</topic><topic>Properties of type I and type II superconductors</topic><topic>RENORMALIZATION</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Similarity</topic><topic>Single crystals</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>STRESSES</topic><topic>Superconducting materials (excluding high-tc compounds)</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>TRANSITION TEMPERATURE</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, D. H.</creatorcontrib><creatorcontrib>Yi, M.</creatorcontrib><creatorcontrib>Mo, S.-K.</creatorcontrib><creatorcontrib>Erickson, A. S.</creatorcontrib><creatorcontrib>Analytis, J.</creatorcontrib><creatorcontrib>Chu, J.-H.</creatorcontrib><creatorcontrib>Singh, D. J.</creatorcontrib><creatorcontrib>Hussain, Z.</creatorcontrib><creatorcontrib>Geballe, T. H.</creatorcontrib><creatorcontrib>Fisher, I. R.</creatorcontrib><creatorcontrib>Shen, Z.-X.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, D. H.</au><au>Yi, M.</au><au>Mo, S.-K.</au><au>Erickson, A. S.</au><au>Analytis, J.</au><au>Chu, J.-H.</au><au>Singh, D. J.</au><au>Hussain, Z.</au><au>Geballe, T. H.</au><au>Fisher, I. R.</au><au>Shen, Z.-X.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of the iron-based superconductor LaOFeP</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-09-04</date><risdate>2008</risdate><volume>455</volume><issue>7209</issue><spage>81</spage><epage>84</epage><pages>81-84</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Superconductivity: 'itinerant' oxypnictides
The discovery of superconductivity in the iron-based layered compounds known as iron oxypnictides has renewed interest in high-temperature superconductivity. Two distinct classes of theories about the nature of the ground state of the oxypnictides have been put forward, characterized by contrasting underlying band structures. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Now Lu
et al
. report angle-resolved photoemission spectroscopy (ARPES) of an iron oxypnictide, LaOFeP, with a pretty high critical temperature of
T
c
= 5.9 K. Their results favour an 'itinerant' ground state, over one resembling the 'Mott insulator' state found in copper oxide superconductors.
Angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (
T
c
= 5.9 K) is reported. These results favour the itinerant ground state, albeit with band renormalization. In addition, the data reveal important differences between these and copper-based superconductors.
The recent discovery of superconductivity in the iron oxypnictide family of compounds
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs
10
,
11
) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach
12
,
13
,
14
,
15
,
16
,
17
, and an itinerant ground state in the weak-coupling approach
18
,
19
,
20
,
21
,
22
. The first approach stresses on-site correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature,
T
c
= 5.9 K), the first-reported iron-based superconductor
2
. Our results favour the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper-based superconductors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18769435</pmid><doi>10.1038/nature07263</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2008-09, Vol.455 (7209), p.81-84 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_855679302 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Antiferromagnetism CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Condensed matter: electronic structure, electrical, magnetic, and optical properties Copper COPPER OXIDE Copper oxide superconductors COPPER OXIDES Dispersion ELECTRICAL CONDUCTIVITY ELECTRONIC STRUCTURE Electronics Exact sciences and technology Ferromagnetism FLUCTUATIONS Ground state GROUND STATES Humanities and Social Sciences IRON Iron compounds letter MAGNETIC PROPERTIES Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) multidisciplinary OXIDES PHOTOEMISSION Physics Properties of type I and type II superconductors RENORMALIZATION Science Science (multidisciplinary) Similarity Single crystals SPECTROSCOPY Spectrum analysis STRESSES Superconducting materials (excluding high-tc compounds) SUPERCONDUCTIVITY SUPERCONDUCTORS TRANSITION TEMPERATURE Transition temperatures |
title | Electronic structure of the iron-based superconductor LaOFeP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20the%20iron-based%20superconductor%20LaOFeP&rft.jtitle=Nature&rft.au=Lu,%20D.%20H.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2008-09-04&rft.volume=455&rft.issue=7209&rft.spage=81&rft.epage=84&rft.pages=81-84&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature07263&rft_dat=%3Cgale_osti_%3EA188944544%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204545968&rft_id=info:pmid/18769435&rft_galeid=A188944544&rfr_iscdi=true |