Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts
A thermodynamically consistent strategy of coarse-graining microscopic models for complex fluids is illustrated for low-molecular polymeric melts subjected to homogeneous flow fields. The systematic coarse-graining method is able to efficiently bridge the time- and length scale gap between microscop...
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2010-09, Vol.165 (17), p.973-979 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 979 |
---|---|
container_issue | 17 |
container_start_page | 973 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 165 |
creator | Ilg, Patrick |
description | A thermodynamically consistent strategy of coarse-graining microscopic models for complex fluids is illustrated for low-molecular polymeric melts subjected to homogeneous flow fields. The systematic coarse-graining method is able to efficiently bridge the time- and length scale gap between microscopic and macroscopic dynamics. A projection operator derivation is employed within the framework of nonequilibrium thermodynamics. From an alternating Monte-Carlo-molecular dynamics iteration scheme we obtain the thermodynamic building blocks of the macroscopic model. We investigate a number of imposed shear and elongational flows of interest and find that the coarse-grained model predicts structural as well as material functions beyond the regime of linear response. The elimination of fast degrees of freedom gives rise to dissipation, which we analyse in terms of the Rouse model. The results are in quantitative agreement with those obtained via standard nonequilibrium molecular dynamics (NEMD) simulations for planar shear and elongation. The coarse-graining method is able to deal with more general flows, which are not accessible by standard NEMD simulations. |
doi_str_mv | 10.1016/j.jnnfm.2010.01.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855677982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025710000248</els_id><sourcerecordid>855677982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-e0f11233b0bccc84ab8962bed68056bf86cb57e234207dfc8c402a3c0b785dae3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1i8MaX4o4ndgQFVfEmVWMpsOc6ldeTYrZ0g5d9jaGduudPpfU66B6F7ShaU0OqxW3Tet_2CkbwhdEEYu0AzKgUvWMXpJZoRLkRBWCmu0U1KHclV8mqG2u0eYh-ayeveGu3chE3wyaYB_JBHHRPgXdTWW7_Dwx6wD76A42idraMde3xGEw4tHn2mtN85aPAhuKmHiHtwQ7pFV612Ce7OfY6-Xl-26_di8_n2sX7eFGZJ6FAAaSllnNekNsbIpa7lqmI1NJUkZVW3sjJ1KYDxJSOiaY3MGNPckFrIstHA5-jhdPcQw3GENKjeJgPOaQ9hTEqWZSXESrKc5KekiSGlCK06RNvrOClK1K9U1ak_qepXqiJUZamZejpRkJ_4thBVMha8gcZGMINqgv2X_wF3gIRr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855677982</pqid></control><display><type>article</type><title>Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ilg, Patrick</creator><creatorcontrib>Ilg, Patrick</creatorcontrib><description>A thermodynamically consistent strategy of coarse-graining microscopic models for complex fluids is illustrated for low-molecular polymeric melts subjected to homogeneous flow fields. The systematic coarse-graining method is able to efficiently bridge the time- and length scale gap between microscopic and macroscopic dynamics. A projection operator derivation is employed within the framework of nonequilibrium thermodynamics. From an alternating Monte-Carlo-molecular dynamics iteration scheme we obtain the thermodynamic building blocks of the macroscopic model. We investigate a number of imposed shear and elongational flows of interest and find that the coarse-grained model predicts structural as well as material functions beyond the regime of linear response. The elimination of fast degrees of freedom gives rise to dissipation, which we analyse in terms of the Rouse model. The results are in quantitative agreement with those obtained via standard nonequilibrium molecular dynamics (NEMD) simulations for planar shear and elongation. The coarse-graining method is able to deal with more general flows, which are not accessible by standard NEMD simulations.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2010.01.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coarse graining ; Computer simulation ; Constitutive equation ; Dynamical systems ; Dynamics ; Elongation ; Mathematical models ; Melts ; Molecular dynamics ; Rheology ; Shear ; Shear flow</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2010-09, Vol.165 (17), p.973-979</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-e0f11233b0bccc84ab8962bed68056bf86cb57e234207dfc8c402a3c0b785dae3</citedby><cites>FETCH-LOGICAL-c401t-e0f11233b0bccc84ab8962bed68056bf86cb57e234207dfc8c402a3c0b785dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2010.01.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ilg, Patrick</creatorcontrib><title>Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts</title><title>Journal of non-Newtonian fluid mechanics</title><description>A thermodynamically consistent strategy of coarse-graining microscopic models for complex fluids is illustrated for low-molecular polymeric melts subjected to homogeneous flow fields. The systematic coarse-graining method is able to efficiently bridge the time- and length scale gap between microscopic and macroscopic dynamics. A projection operator derivation is employed within the framework of nonequilibrium thermodynamics. From an alternating Monte-Carlo-molecular dynamics iteration scheme we obtain the thermodynamic building blocks of the macroscopic model. We investigate a number of imposed shear and elongational flows of interest and find that the coarse-grained model predicts structural as well as material functions beyond the regime of linear response. The elimination of fast degrees of freedom gives rise to dissipation, which we analyse in terms of the Rouse model. The results are in quantitative agreement with those obtained via standard nonequilibrium molecular dynamics (NEMD) simulations for planar shear and elongation. The coarse-graining method is able to deal with more general flows, which are not accessible by standard NEMD simulations.</description><subject>Coarse graining</subject><subject>Computer simulation</subject><subject>Constitutive equation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elongation</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>Molecular dynamics</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear flow</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1i8MaX4o4ndgQFVfEmVWMpsOc6ldeTYrZ0g5d9jaGduudPpfU66B6F7ShaU0OqxW3Tet_2CkbwhdEEYu0AzKgUvWMXpJZoRLkRBWCmu0U1KHclV8mqG2u0eYh-ayeveGu3chE3wyaYB_JBHHRPgXdTWW7_Dwx6wD76A42idraMde3xGEw4tHn2mtN85aPAhuKmHiHtwQ7pFV612Ce7OfY6-Xl-26_di8_n2sX7eFGZJ6FAAaSllnNekNsbIpa7lqmI1NJUkZVW3sjJ1KYDxJSOiaY3MGNPckFrIstHA5-jhdPcQw3GENKjeJgPOaQ9hTEqWZSXESrKc5KekiSGlCK06RNvrOClK1K9U1ak_qepXqiJUZamZejpRkJ_4thBVMha8gcZGMINqgv2X_wF3gIRr</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Ilg, Patrick</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts</title><author>Ilg, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-e0f11233b0bccc84ab8962bed68056bf86cb57e234207dfc8c402a3c0b785dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coarse graining</topic><topic>Computer simulation</topic><topic>Constitutive equation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elongation</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>Molecular dynamics</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilg, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilg, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>165</volume><issue>17</issue><spage>973</spage><epage>979</epage><pages>973-979</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>A thermodynamically consistent strategy of coarse-graining microscopic models for complex fluids is illustrated for low-molecular polymeric melts subjected to homogeneous flow fields. The systematic coarse-graining method is able to efficiently bridge the time- and length scale gap between microscopic and macroscopic dynamics. A projection operator derivation is employed within the framework of nonequilibrium thermodynamics. From an alternating Monte-Carlo-molecular dynamics iteration scheme we obtain the thermodynamic building blocks of the macroscopic model. We investigate a number of imposed shear and elongational flows of interest and find that the coarse-grained model predicts structural as well as material functions beyond the regime of linear response. The elimination of fast degrees of freedom gives rise to dissipation, which we analyse in terms of the Rouse model. The results are in quantitative agreement with those obtained via standard nonequilibrium molecular dynamics (NEMD) simulations for planar shear and elongation. The coarse-graining method is able to deal with more general flows, which are not accessible by standard NEMD simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2010.01.022</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2010-09, Vol.165 (17), p.973-979 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_proquest_miscellaneous_855677982 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Coarse graining Computer simulation Constitutive equation Dynamical systems Dynamics Elongation Mathematical models Melts Molecular dynamics Rheology Shear Shear flow |
title | Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamically%20consistent%20coarse%20graining%20the%20non-equilibrium%20dynamics%20of%20unentangled%20polymer%20melts&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Ilg,%20Patrick&rft.date=2010-09-01&rft.volume=165&rft.issue=17&rft.spage=973&rft.epage=979&rft.pages=973-979&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2010.01.022&rft_dat=%3Cproquest_cross%3E855677982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855677982&rft_id=info:pmid/&rft_els_id=S0377025710000248&rfr_iscdi=true |