Estimators of the multiple correlation coefficient: Local robustness and confidence intervals

Many robust regression estimators are defined by minimizing a measure of spread of the residuals. An accompanying R 2-measure, or multiple correlation coefficient, is then easily obtained. In this paper, local robustness properties of these robust R 2-coefficients are investigated. It is also shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2003-07, Vol.44 (3), p.315-334
Hauptverfasser: Croux, Cristophe, Dehon, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 315
container_title Statistical papers (Berlin, Germany)
container_volume 44
creator Croux, Cristophe
Dehon, Catherine
description Many robust regression estimators are defined by minimizing a measure of spread of the residuals. An accompanying R 2-measure, or multiple correlation coefficient, is then easily obtained. In this paper, local robustness properties of these robust R 2-coefficients are investigated. It is also shown how confidence intervals for the population multiple correlation coefficient can be constructed in the case of multivariate normality.
doi_str_mv 10.1007/s00362-003-0158-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855677976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855677976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-3436dcef8da7b0e83d177e4bc19171fcc77c3fc0b0ba475a908ab8e6f07c9b093</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxUVIIZuPPyA30x5ycjuyZI_UWwjpByz0kh6DkOURcfBKW0kO5L-Pls0p0Mt7c_jxmJnH2DWHrxwAv2UAMXRt1RZ4r1o8YRs-cNFq1OqUbUCLru2hG87Yec7PAFwpBRv2eJ_LvLMlptxE35QnanbrUub9Qo2LKdFiyxxDncn72c0UyvdmG51dmhTHNZdAOTc2TJUIfp4oOGrmUCi92CVfsk--Gl29-wX7--P-4e5Xu_3z8_fd7bZ1EmRphRTD5MiryeIIpMTEEUmOjmuO3DuH6IR3MMJoJfZWg7KjosEDOj3W0y7YzTF3n-K_lXIxuzk7WhYbKK7ZqL4fEDUOlfzygXyOawp1OdOhQil73R3yPv-XEoPWUmlZIX6EXIo5J_Jmn-or06vhYA6lmGMppqo5lGJQvAGYoIBK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236994894</pqid></control><display><type>article</type><title>Estimators of the multiple correlation coefficient: Local robustness and confidence intervals</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Croux, Cristophe ; Dehon, Catherine</creator><creatorcontrib>Croux, Cristophe ; Dehon, Catherine</creatorcontrib><description>Many robust regression estimators are defined by minimizing a measure of spread of the residuals. An accompanying R 2-measure, or multiple correlation coefficient, is then easily obtained. In this paper, local robustness properties of these robust R 2-coefficients are investigated. It is also shown how confidence intervals for the population multiple correlation coefficient can be constructed in the case of multivariate normality.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-003-0158-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Confidence intervals ; Construction ; Correlation coefficients ; Estimators ; Normality ; Regression ; Regression analysis ; Robustness ; Robustness (mathematics) ; Spreads ; Statistical analysis ; Variables</subject><ispartof>Statistical papers (Berlin, Germany), 2003-07, Vol.44 (3), p.315-334</ispartof><rights>Springer-Verlag 2003</rights><rights>Springer-Verlag 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-3436dcef8da7b0e83d177e4bc19171fcc77c3fc0b0ba475a908ab8e6f07c9b093</citedby><cites>FETCH-LOGICAL-c404t-3436dcef8da7b0e83d177e4bc19171fcc77c3fc0b0ba475a908ab8e6f07c9b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Croux, Cristophe</creatorcontrib><creatorcontrib>Dehon, Catherine</creatorcontrib><title>Estimators of the multiple correlation coefficient: Local robustness and confidence intervals</title><title>Statistical papers (Berlin, Germany)</title><description>Many robust regression estimators are defined by minimizing a measure of spread of the residuals. An accompanying R 2-measure, or multiple correlation coefficient, is then easily obtained. In this paper, local robustness properties of these robust R 2-coefficients are investigated. It is also shown how confidence intervals for the population multiple correlation coefficient can be constructed in the case of multivariate normality.</description><subject>Confidence intervals</subject><subject>Construction</subject><subject>Correlation coefficients</subject><subject>Estimators</subject><subject>Normality</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Spreads</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1r3DAQxUVIIZuPPyA30x5ycjuyZI_UWwjpByz0kh6DkOURcfBKW0kO5L-Pls0p0Mt7c_jxmJnH2DWHrxwAv2UAMXRt1RZ4r1o8YRs-cNFq1OqUbUCLru2hG87Yec7PAFwpBRv2eJ_LvLMlptxE35QnanbrUub9Qo2LKdFiyxxDncn72c0UyvdmG51dmhTHNZdAOTc2TJUIfp4oOGrmUCi92CVfsk--Gl29-wX7--P-4e5Xu_3z8_fd7bZ1EmRphRTD5MiryeIIpMTEEUmOjmuO3DuH6IR3MMJoJfZWg7KjosEDOj3W0y7YzTF3n-K_lXIxuzk7WhYbKK7ZqL4fEDUOlfzygXyOawp1OdOhQil73R3yPv-XEoPWUmlZIX6EXIo5J_Jmn-or06vhYA6lmGMppqo5lGJQvAGYoIBK</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Croux, Cristophe</creator><creator>Dehon, Catherine</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>H8D</scope></search><sort><creationdate>20030701</creationdate><title>Estimators of the multiple correlation coefficient: Local robustness and confidence intervals</title><author>Croux, Cristophe ; Dehon, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-3436dcef8da7b0e83d177e4bc19171fcc77c3fc0b0ba475a908ab8e6f07c9b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Confidence intervals</topic><topic>Construction</topic><topic>Correlation coefficients</topic><topic>Estimators</topic><topic>Normality</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Spreads</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croux, Cristophe</creatorcontrib><creatorcontrib>Dehon, Catherine</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Aerospace Database</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croux, Cristophe</au><au>Dehon, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimators of the multiple correlation coefficient: Local robustness and confidence intervals</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>44</volume><issue>3</issue><spage>315</spage><epage>334</epage><pages>315-334</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Many robust regression estimators are defined by minimizing a measure of spread of the residuals. An accompanying R 2-measure, or multiple correlation coefficient, is then easily obtained. In this paper, local robustness properties of these robust R 2-coefficients are investigated. It is also shown how confidence intervals for the population multiple correlation coefficient can be constructed in the case of multivariate normality.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00362-003-0158-7</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2003-07, Vol.44 (3), p.315-334
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_miscellaneous_855677976
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Confidence intervals
Construction
Correlation coefficients
Estimators
Normality
Regression
Regression analysis
Robustness
Robustness (mathematics)
Spreads
Statistical analysis
Variables
title Estimators of the multiple correlation coefficient: Local robustness and confidence intervals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimators%20of%20the%20multiple%20correlation%20coefficient:%20Local%20robustness%20and%20confidence%20intervals&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Croux,%20Cristophe&rft.date=2003-07-01&rft.volume=44&rft.issue=3&rft.spage=315&rft.epage=334&rft.pages=315-334&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-003-0158-7&rft_dat=%3Cproquest_cross%3E855677976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236994894&rft_id=info:pmid/&rfr_iscdi=true