Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds

Abstract The superelastic nature of bones requires matching biomechanical properties from the ideal artificial biomedical implants in order to provide smooth load transfer and foster the growth of new bone tissues. In this work, we determine the biomechanical characteristics of porous NiTi implants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-01, Vol.32 (2), p.330-338
Hauptverfasser: Liu, Xiangmei, Wu, Shuilin, Yeung, Kelvin W.K, Chan, Y.L, Hu, Tao, Xu, Zushun, Liu, Xuanyong, Chung, Jonathan C.Y, Cheung, Kenneth M.C, Chu, Paul K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 2
container_start_page 330
container_title Biomaterials
container_volume 32
creator Liu, Xiangmei
Wu, Shuilin
Yeung, Kelvin W.K
Chan, Y.L
Hu, Tao
Xu, Zushun
Liu, Xuanyong
Chung, Jonathan C.Y
Cheung, Kenneth M.C
Chu, Paul K
description Abstract The superelastic nature of bones requires matching biomechanical properties from the ideal artificial biomedical implants in order to provide smooth load transfer and foster the growth of new bone tissues. In this work, we determine the biomechanical characteristics of porous NiTi implants and investigate bone ingrowth under actual load-bearing conditions in vivo . In this systematic and comparative study, porous NiTi, porous Ti, dense NiTi, and dense Ti are implanted into 5 mm diameter holes in the distal part of the femur/tibia of rabbits for 15 weeks. The bone ingrowth and interfacial bonding strength are evaluated by histological analysis and push-out test. The porous NiTi materials bond very well to newly formed bone tissues and the highest average strength of 357 N and best ductility are achieved from the porous NiTi materials. The bonding curve obtained from the NiTi scaffold shows similar superelasticity as natural bones with a deflection of 0.30–0.85 mm thus shielding new bone tissues from large load stress. This is believed to be the reason why new bone tissues can penetrate deeply into the porous NiTi scaffold compared to the one made of porous Ti. Histological analysis reveals that new bone tissues adhere and grow well on the external surfaces as well as exposed areas on the inner pores of the NiTi scaffold. The in vitro study indicates that the surface chemical composition and topography of the porous structure leads to good cytocompatibility. Consequently, osteoblasts proliferate smoothly on the entire implant including the flat surface, embossed region, exposed area of the pores, and interconnected channels. In conjunction with the good cytocompatibility, the superelastic biomechanical properties of the porous NiTi scaffold bodes well for fast formation and ingrowth of new bones, and porous NiTi scaffolds are thus suitable for clinical applications under load-bearing conditions.
doi_str_mv 10.1016/j.biomaterials.2010.08.102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855677050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210011403</els_id><sourcerecordid>812126213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-eefdcbab4a534ffd6fe99952821fc240dce57370b3fd6b76235db999234b20fe3</originalsourceid><addsrcrecordid>eNqNkltrFTEUhYMo9lj9CxJ88WmOyc5kLj4IUq9QFLS-CSHJ7Ngc5yTTZEbpv2_G0xbxxT6FsL59Ya9FyDPOtpzx5sVua3zc6xmT12PeAisC64oG98iGd21XyZ7J-2TDeA1V33A4Io9y3rHyZzU8JEfAuqbnnG3I9y846tnHkM_9RA3OvxEDjTlj9GHGH-mPSHUYaF4mTIXOs7d03QDtuQ7eZuoDnWKKS6af_Jmn2Wrn4jjkx-SBKxvik-v3mHx79_bs5EN1-vn9x5PXp5WVAuYK0Q3WaFNrKWrnhsZh3_cSOuDOQs0Gi7IVLTOiaKZtQMjBFAJEbYA5FMfk-aHvlOLFgnlWe58tjqMOWLZSnZRN2zLJ_k9y4NAAF4V8eSBtKtdI6NSU_F6nS8WZWm1QO_W3DWq1QbGuaFCKn16PWcweh9vSm7sX4M0BwHKWXx6TytZjsDj4hHZWQ_R3m_PqnzZ29MUSPf7ES8y7uKSw1nCVQTH1dQ3EmgdeolCyIMQVHI229w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>812126213</pqid></control><display><type>article</type><title>Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xiangmei ; Wu, Shuilin ; Yeung, Kelvin W.K ; Chan, Y.L ; Hu, Tao ; Xu, Zushun ; Liu, Xuanyong ; Chung, Jonathan C.Y ; Cheung, Kenneth M.C ; Chu, Paul K</creator><creatorcontrib>Liu, Xiangmei ; Wu, Shuilin ; Yeung, Kelvin W.K ; Chan, Y.L ; Hu, Tao ; Xu, Zushun ; Liu, Xuanyong ; Chung, Jonathan C.Y ; Cheung, Kenneth M.C ; Chu, Paul K</creatorcontrib><description>Abstract The superelastic nature of bones requires matching biomechanical properties from the ideal artificial biomedical implants in order to provide smooth load transfer and foster the growth of new bone tissues. In this work, we determine the biomechanical characteristics of porous NiTi implants and investigate bone ingrowth under actual load-bearing conditions in vivo . In this systematic and comparative study, porous NiTi, porous Ti, dense NiTi, and dense Ti are implanted into 5 mm diameter holes in the distal part of the femur/tibia of rabbits for 15 weeks. The bone ingrowth and interfacial bonding strength are evaluated by histological analysis and push-out test. The porous NiTi materials bond very well to newly formed bone tissues and the highest average strength of 357 N and best ductility are achieved from the porous NiTi materials. The bonding curve obtained from the NiTi scaffold shows similar superelasticity as natural bones with a deflection of 0.30–0.85 mm thus shielding new bone tissues from large load stress. This is believed to be the reason why new bone tissues can penetrate deeply into the porous NiTi scaffold compared to the one made of porous Ti. Histological analysis reveals that new bone tissues adhere and grow well on the external surfaces as well as exposed areas on the inner pores of the NiTi scaffold. The in vitro study indicates that the surface chemical composition and topography of the porous structure leads to good cytocompatibility. Consequently, osteoblasts proliferate smoothly on the entire implant including the flat surface, embossed region, exposed area of the pores, and interconnected channels. In conjunction with the good cytocompatibility, the superelastic biomechanical properties of the porous NiTi scaffold bodes well for fast formation and ingrowth of new bones, and porous NiTi scaffolds are thus suitable for clinical applications under load-bearing conditions.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.08.102</identifier><identifier>PMID: 20869110</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biomechanical Phenomena ; Biomechanics ; Bone and Bones - surgery ; Dentistry ; Female ; Femur - surgery ; Microscopy, Electron, Scanning ; Nickel - chemistry ; Osseointegration ; Osseointegration - physiology ; Porosity ; Porous NiTi shape memory alloy ; Rabbits ; Scaffolds ; Superelasticity ; Tibia - surgery ; Tissue Scaffolds - chemistry ; Titanium - chemistry ; X-Ray Microtomography</subject><ispartof>Biomaterials, 2011-01, Vol.32 (2), p.330-338</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-eefdcbab4a534ffd6fe99952821fc240dce57370b3fd6b76235db999234b20fe3</citedby><cites>FETCH-LOGICAL-c532t-eefdcbab4a534ffd6fe99952821fc240dce57370b3fd6b76235db999234b20fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.08.102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20869110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiangmei</creatorcontrib><creatorcontrib>Wu, Shuilin</creatorcontrib><creatorcontrib>Yeung, Kelvin W.K</creatorcontrib><creatorcontrib>Chan, Y.L</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Xu, Zushun</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Chung, Jonathan C.Y</creatorcontrib><creatorcontrib>Cheung, Kenneth M.C</creatorcontrib><creatorcontrib>Chu, Paul K</creatorcontrib><title>Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The superelastic nature of bones requires matching biomechanical properties from the ideal artificial biomedical implants in order to provide smooth load transfer and foster the growth of new bone tissues. In this work, we determine the biomechanical characteristics of porous NiTi implants and investigate bone ingrowth under actual load-bearing conditions in vivo . In this systematic and comparative study, porous NiTi, porous Ti, dense NiTi, and dense Ti are implanted into 5 mm diameter holes in the distal part of the femur/tibia of rabbits for 15 weeks. The bone ingrowth and interfacial bonding strength are evaluated by histological analysis and push-out test. The porous NiTi materials bond very well to newly formed bone tissues and the highest average strength of 357 N and best ductility are achieved from the porous NiTi materials. The bonding curve obtained from the NiTi scaffold shows similar superelasticity as natural bones with a deflection of 0.30–0.85 mm thus shielding new bone tissues from large load stress. This is believed to be the reason why new bone tissues can penetrate deeply into the porous NiTi scaffold compared to the one made of porous Ti. Histological analysis reveals that new bone tissues adhere and grow well on the external surfaces as well as exposed areas on the inner pores of the NiTi scaffold. The in vitro study indicates that the surface chemical composition and topography of the porous structure leads to good cytocompatibility. Consequently, osteoblasts proliferate smoothly on the entire implant including the flat surface, embossed region, exposed area of the pores, and interconnected channels. In conjunction with the good cytocompatibility, the superelastic biomechanical properties of the porous NiTi scaffold bodes well for fast formation and ingrowth of new bones, and porous NiTi scaffolds are thus suitable for clinical applications under load-bearing conditions.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Bone and Bones - surgery</subject><subject>Dentistry</subject><subject>Female</subject><subject>Femur - surgery</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nickel - chemistry</subject><subject>Osseointegration</subject><subject>Osseointegration - physiology</subject><subject>Porosity</subject><subject>Porous NiTi shape memory alloy</subject><subject>Rabbits</subject><subject>Scaffolds</subject><subject>Superelasticity</subject><subject>Tibia - surgery</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Titanium - chemistry</subject><subject>X-Ray Microtomography</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkltrFTEUhYMo9lj9CxJ88WmOyc5kLj4IUq9QFLS-CSHJ7Ngc5yTTZEbpv2_G0xbxxT6FsL59Ya9FyDPOtpzx5sVua3zc6xmT12PeAisC64oG98iGd21XyZ7J-2TDeA1V33A4Io9y3rHyZzU8JEfAuqbnnG3I9y846tnHkM_9RA3OvxEDjTlj9GHGH-mPSHUYaF4mTIXOs7d03QDtuQ7eZuoDnWKKS6af_Jmn2Wrn4jjkx-SBKxvik-v3mHx79_bs5EN1-vn9x5PXp5WVAuYK0Q3WaFNrKWrnhsZh3_cSOuDOQs0Gi7IVLTOiaKZtQMjBFAJEbYA5FMfk-aHvlOLFgnlWe58tjqMOWLZSnZRN2zLJ_k9y4NAAF4V8eSBtKtdI6NSU_F6nS8WZWm1QO_W3DWq1QbGuaFCKn16PWcweh9vSm7sX4M0BwHKWXx6TytZjsDj4hHZWQ_R3m_PqnzZ29MUSPf7ES8y7uKSw1nCVQTH1dQ3EmgdeolCyIMQVHI229w</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Liu, Xiangmei</creator><creator>Wu, Shuilin</creator><creator>Yeung, Kelvin W.K</creator><creator>Chan, Y.L</creator><creator>Hu, Tao</creator><creator>Xu, Zushun</creator><creator>Liu, Xuanyong</creator><creator>Chung, Jonathan C.Y</creator><creator>Cheung, Kenneth M.C</creator><creator>Chu, Paul K</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110101</creationdate><title>Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds</title><author>Liu, Xiangmei ; Wu, Shuilin ; Yeung, Kelvin W.K ; Chan, Y.L ; Hu, Tao ; Xu, Zushun ; Liu, Xuanyong ; Chung, Jonathan C.Y ; Cheung, Kenneth M.C ; Chu, Paul K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-eefdcbab4a534ffd6fe99952821fc240dce57370b3fd6b76235db999234b20fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Bone and Bones - surgery</topic><topic>Dentistry</topic><topic>Female</topic><topic>Femur - surgery</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nickel - chemistry</topic><topic>Osseointegration</topic><topic>Osseointegration - physiology</topic><topic>Porosity</topic><topic>Porous NiTi shape memory alloy</topic><topic>Rabbits</topic><topic>Scaffolds</topic><topic>Superelasticity</topic><topic>Tibia - surgery</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Titanium - chemistry</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangmei</creatorcontrib><creatorcontrib>Wu, Shuilin</creatorcontrib><creatorcontrib>Yeung, Kelvin W.K</creatorcontrib><creatorcontrib>Chan, Y.L</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Xu, Zushun</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Chung, Jonathan C.Y</creatorcontrib><creatorcontrib>Cheung, Kenneth M.C</creatorcontrib><creatorcontrib>Chu, Paul K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangmei</au><au>Wu, Shuilin</au><au>Yeung, Kelvin W.K</au><au>Chan, Y.L</au><au>Hu, Tao</au><au>Xu, Zushun</au><au>Liu, Xuanyong</au><au>Chung, Jonathan C.Y</au><au>Cheung, Kenneth M.C</au><au>Chu, Paul K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>2</issue><spage>330</spage><epage>338</epage><pages>330-338</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The superelastic nature of bones requires matching biomechanical properties from the ideal artificial biomedical implants in order to provide smooth load transfer and foster the growth of new bone tissues. In this work, we determine the biomechanical characteristics of porous NiTi implants and investigate bone ingrowth under actual load-bearing conditions in vivo . In this systematic and comparative study, porous NiTi, porous Ti, dense NiTi, and dense Ti are implanted into 5 mm diameter holes in the distal part of the femur/tibia of rabbits for 15 weeks. The bone ingrowth and interfacial bonding strength are evaluated by histological analysis and push-out test. The porous NiTi materials bond very well to newly formed bone tissues and the highest average strength of 357 N and best ductility are achieved from the porous NiTi materials. The bonding curve obtained from the NiTi scaffold shows similar superelasticity as natural bones with a deflection of 0.30–0.85 mm thus shielding new bone tissues from large load stress. This is believed to be the reason why new bone tissues can penetrate deeply into the porous NiTi scaffold compared to the one made of porous Ti. Histological analysis reveals that new bone tissues adhere and grow well on the external surfaces as well as exposed areas on the inner pores of the NiTi scaffold. The in vitro study indicates that the surface chemical composition and topography of the porous structure leads to good cytocompatibility. Consequently, osteoblasts proliferate smoothly on the entire implant including the flat surface, embossed region, exposed area of the pores, and interconnected channels. In conjunction with the good cytocompatibility, the superelastic biomechanical properties of the porous NiTi scaffold bodes well for fast formation and ingrowth of new bones, and porous NiTi scaffolds are thus suitable for clinical applications under load-bearing conditions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20869110</pmid><doi>10.1016/j.biomaterials.2010.08.102</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-01, Vol.32 (2), p.330-338
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_855677050
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Biomechanical Phenomena
Biomechanics
Bone and Bones - surgery
Dentistry
Female
Femur - surgery
Microscopy, Electron, Scanning
Nickel - chemistry
Osseointegration
Osseointegration - physiology
Porosity
Porous NiTi shape memory alloy
Rabbits
Scaffolds
Superelasticity
Tibia - surgery
Tissue Scaffolds - chemistry
Titanium - chemistry
X-Ray Microtomography
title Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20osseointegration%20and%20superelastic%20biomechanics%20in%20porous%20NiTi%20scaffolds&rft.jtitle=Biomaterials&rft.au=Liu,%20Xiangmei&rft.date=2011-01-01&rft.volume=32&rft.issue=2&rft.spage=330&rft.epage=338&rft.pages=330-338&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.08.102&rft_dat=%3Cproquest_cross%3E812126213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=812126213&rft_id=info:pmid/20869110&rft_els_id=S0142961210011403&rfr_iscdi=true