Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice
A TYPE II superconductor in a magnetic field is penetrated by a hexagonal lattice of quantized flux lines. An applied current imposes a Lorentz force on these lines, but motion of the lattice will always be inhibited by pinning to material defects. Beyond a certain 'critical' current densi...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1995-08, Vol.376 (6543), p.753-755 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 755 |
---|---|
container_issue | 6543 |
container_start_page | 753 |
container_title | Nature (London) |
container_volume | 376 |
creator | Yaron, U Gammel, P. L Huse, D. A Kleiman, R. N Oglesby, C. S Bucher, E Batlogg, B Bishop, D. J Mortensen, K Clausen, K. N |
description | A TYPE II superconductor in a magnetic field is penetrated by a hexagonal lattice of quantized flux lines. An applied current imposes a Lorentz force on these lines, but motion of the lattice will always be inhibited by pinning to material defects. Beyond a certain 'critical' current density, the lattice can break free of its pins and flow, dissipating energy and destroying superconductivity in the sample. The microscopic nature of this process is still poorly understood; in particular, little is known about the detailed structure of the flux-line lattice as it begins to depin and flow in response to the applied current. We have used small-angle neutron scattering super(1a[curren]-3) to image the structure of the flux lattice in NbSe super(2) in the presence of a direct current, while also measuring the transport properties. Our observations of the structure of the flux lattice near the critical current verify theoretical predictions super(4) of the existence of three regimes as a function of increasing driving force (or current): first, no motion; then disordered, plastic motion; and finally, at high velocities, a coherently moving flux crystal. |
doi_str_mv | 10.1038/376753a0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855676385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753556360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-770af94385bc9443b7658b60c2ac41005936c6ead5a2ea5be2ed190f84cfc3963</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAgCo6j4BNIcKObatokJ-lSxBsMuFDXJZOeaodOWpPUy9sbHZ2FC10FDh9_TvITsp-zk5xxfcoVKMkN2yCTXCjIBGi1SSaMFTpjmsM22QlhwRiTuRITUt9FP9o4etNRfGlrdBZp03tqaHztsxBxoIPvLYZAW0fjE9Iah9a51j3SvvkahHFAb3tXp6DPcdONb1nXOqSdibG1uEu2GtMF3Ps-p-Th8uL-_Dqb3V7dnJ_NMss1i5lSzDSl4FrObSkEnyuQeg7MFsaKPG1ccrCAppamQCPnWGCdl6zRwjaWl8Cn5GiVmzZ-HjHEatkGi11nHPZjqLSUoCDl_yuV4EIXpSqSPP5T5um3UywHlujhL7roR-_Si6uCCQEAGv5FEr6Svi-1vg_BY1MNvl0a_17lrPqsufqpOdGDFXUmtYhruAYfitailg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204466686</pqid></control><display><type>article</type><title>Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yaron, U ; Gammel, P. L ; Huse, D. A ; Kleiman, R. N ; Oglesby, C. S ; Bucher, E ; Batlogg, B ; Bishop, D. J ; Mortensen, K ; Clausen, K. N</creator><creatorcontrib>Yaron, U ; Gammel, P. L ; Huse, D. A ; Kleiman, R. N ; Oglesby, C. S ; Bucher, E ; Batlogg, B ; Bishop, D. J ; Mortensen, K ; Clausen, K. N</creatorcontrib><description>A TYPE II superconductor in a magnetic field is penetrated by a hexagonal lattice of quantized flux lines. An applied current imposes a Lorentz force on these lines, but motion of the lattice will always be inhibited by pinning to material defects. Beyond a certain 'critical' current density, the lattice can break free of its pins and flow, dissipating energy and destroying superconductivity in the sample. The microscopic nature of this process is still poorly understood; in particular, little is known about the detailed structure of the flux-line lattice as it begins to depin and flow in response to the applied current. We have used small-angle neutron scattering super(1a[curren]-3) to image the structure of the flux lattice in NbSe super(2) in the presence of a direct current, while also measuring the transport properties. Our observations of the structure of the flux lattice near the critical current verify theoretical predictions super(4) of the existence of three regimes as a function of increasing driving force (or current): first, no motion; then disordered, plastic motion; and finally, at high velocities, a coherently moving flux crystal.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/376753a0</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Current density ; Fluctuations ; Flux ; Hexagonal lattice ; Lattices ; Magnetic fields ; Neutron flux ; Neutrons ; Scientific imaging ; Superconductivity ; Superconductors</subject><ispartof>Nature (London), 1995-08, Vol.376 (6543), p.753-755</ispartof><rights>Copyright Macmillan Journals Ltd. Aug 31, 1995</rights><rights>Copyright Nature Publishing Group Aug 31, 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-770af94385bc9443b7658b60c2ac41005936c6ead5a2ea5be2ed190f84cfc3963</citedby><cites>FETCH-LOGICAL-c380t-770af94385bc9443b7658b60c2ac41005936c6ead5a2ea5be2ed190f84cfc3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2729,27931,27932</link.rule.ids></links><search><creatorcontrib>Yaron, U</creatorcontrib><creatorcontrib>Gammel, P. L</creatorcontrib><creatorcontrib>Huse, D. A</creatorcontrib><creatorcontrib>Kleiman, R. N</creatorcontrib><creatorcontrib>Oglesby, C. S</creatorcontrib><creatorcontrib>Bucher, E</creatorcontrib><creatorcontrib>Batlogg, B</creatorcontrib><creatorcontrib>Bishop, D. J</creatorcontrib><creatorcontrib>Mortensen, K</creatorcontrib><creatorcontrib>Clausen, K. N</creatorcontrib><title>Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice</title><title>Nature (London)</title><description>A TYPE II superconductor in a magnetic field is penetrated by a hexagonal lattice of quantized flux lines. An applied current imposes a Lorentz force on these lines, but motion of the lattice will always be inhibited by pinning to material defects. Beyond a certain 'critical' current density, the lattice can break free of its pins and flow, dissipating energy and destroying superconductivity in the sample. The microscopic nature of this process is still poorly understood; in particular, little is known about the detailed structure of the flux-line lattice as it begins to depin and flow in response to the applied current. We have used small-angle neutron scattering super(1a[curren]-3) to image the structure of the flux lattice in NbSe super(2) in the presence of a direct current, while also measuring the transport properties. Our observations of the structure of the flux lattice near the critical current verify theoretical predictions super(4) of the existence of three regimes as a function of increasing driving force (or current): first, no motion; then disordered, plastic motion; and finally, at high velocities, a coherently moving flux crystal.</description><subject>Current density</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Hexagonal lattice</subject><subject>Lattices</subject><subject>Magnetic fields</subject><subject>Neutron flux</subject><subject>Neutrons</subject><subject>Scientific imaging</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0ctKxDAUBuAgCo6j4BNIcKObatokJ-lSxBsMuFDXJZOeaodOWpPUy9sbHZ2FC10FDh9_TvITsp-zk5xxfcoVKMkN2yCTXCjIBGi1SSaMFTpjmsM22QlhwRiTuRITUt9FP9o4etNRfGlrdBZp03tqaHztsxBxoIPvLYZAW0fjE9Iah9a51j3SvvkahHFAb3tXp6DPcdONb1nXOqSdibG1uEu2GtMF3Ps-p-Th8uL-_Dqb3V7dnJ_NMss1i5lSzDSl4FrObSkEnyuQeg7MFsaKPG1ccrCAppamQCPnWGCdl6zRwjaWl8Cn5GiVmzZ-HjHEatkGi11nHPZjqLSUoCDl_yuV4EIXpSqSPP5T5um3UywHlujhL7roR-_Si6uCCQEAGv5FEr6Svi-1vg_BY1MNvl0a_17lrPqsufqpOdGDFXUmtYhruAYfitailg</recordid><startdate>19950831</startdate><enddate>19950831</enddate><creator>Yaron, U</creator><creator>Gammel, P. L</creator><creator>Huse, D. A</creator><creator>Kleiman, R. N</creator><creator>Oglesby, C. S</creator><creator>Bucher, E</creator><creator>Batlogg, B</creator><creator>Bishop, D. J</creator><creator>Mortensen, K</creator><creator>Clausen, K. N</creator><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>3V.</scope><scope>7RV</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950831</creationdate><title>Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice</title><author>Yaron, U ; Gammel, P. L ; Huse, D. A ; Kleiman, R. N ; Oglesby, C. S ; Bucher, E ; Batlogg, B ; Bishop, D. J ; Mortensen, K ; Clausen, K. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-770af94385bc9443b7658b60c2ac41005936c6ead5a2ea5be2ed190f84cfc3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Current density</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Hexagonal lattice</topic><topic>Lattices</topic><topic>Magnetic fields</topic><topic>Neutron flux</topic><topic>Neutrons</topic><topic>Scientific imaging</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaron, U</creatorcontrib><creatorcontrib>Gammel, P. L</creatorcontrib><creatorcontrib>Huse, D. A</creatorcontrib><creatorcontrib>Kleiman, R. N</creatorcontrib><creatorcontrib>Oglesby, C. S</creatorcontrib><creatorcontrib>Bucher, E</creatorcontrib><creatorcontrib>Batlogg, B</creatorcontrib><creatorcontrib>Bishop, D. J</creatorcontrib><creatorcontrib>Mortensen, K</creatorcontrib><creatorcontrib>Clausen, K. N</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaron, U</au><au>Gammel, P. L</au><au>Huse, D. A</au><au>Kleiman, R. N</au><au>Oglesby, C. S</au><au>Bucher, E</au><au>Batlogg, B</au><au>Bishop, D. J</au><au>Mortensen, K</au><au>Clausen, K. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice</atitle><jtitle>Nature (London)</jtitle><date>1995-08-31</date><risdate>1995</risdate><volume>376</volume><issue>6543</issue><spage>753</spage><epage>755</epage><pages>753-755</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A TYPE II superconductor in a magnetic field is penetrated by a hexagonal lattice of quantized flux lines. An applied current imposes a Lorentz force on these lines, but motion of the lattice will always be inhibited by pinning to material defects. Beyond a certain 'critical' current density, the lattice can break free of its pins and flow, dissipating energy and destroying superconductivity in the sample. The microscopic nature of this process is still poorly understood; in particular, little is known about the detailed structure of the flux-line lattice as it begins to depin and flow in response to the applied current. We have used small-angle neutron scattering super(1a[curren]-3) to image the structure of the flux lattice in NbSe super(2) in the presence of a direct current, while also measuring the transport properties. Our observations of the structure of the flux lattice near the critical current verify theoretical predictions super(4) of the existence of three regimes as a function of increasing driving force (or current): first, no motion; then disordered, plastic motion; and finally, at high velocities, a coherently moving flux crystal.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/376753a0</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1995-08, Vol.376 (6543), p.753-755 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_855676385 |
source | Nature; Alma/SFX Local Collection |
subjects | Current density Fluctuations Flux Hexagonal lattice Lattices Magnetic fields Neutron flux Neutrons Scientific imaging Superconductivity Superconductors |
title | Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T08%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evidence%20for%20a%20two-step%20process%20in%20the%20depinning%20of%20the%20superconducting%20flux-line%20lattice&rft.jtitle=Nature%20(London)&rft.au=Yaron,%20U&rft.date=1995-08-31&rft.volume=376&rft.issue=6543&rft.spage=753&rft.epage=755&rft.pages=753-755&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/376753a0&rft_dat=%3Cproquest_cross%3E1753556360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204466686&rft_id=info:pmid/&rfr_iscdi=true |