Resonant antineutrino induced electron capture with low energy bound-beta beams
Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of f...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2010-01, Vol.65 (1-2), p.81-87, Article 81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1-2 |
container_start_page | 81 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 65 |
creator | Oldeman, R. G. C. Meloni, M. Saitta, B. |
description | Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10
3
kg is up to one interaction per 8.3⋅10
18
decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10
21
decaying atoms, provided that extremely stringent monochromaticity conditions (10
−7
or better) are achieved in future ion beams. |
doi_str_mv | 10.1140/epjc/s10052-009-1209-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_855674647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364855990</galeid><sourcerecordid>A364855990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</originalsourceid><addsrcrecordid>eNqFkdtq3DAQhk1oIem2r1AMpZReOBnJsmxfhtBDIFDYJtdiLI-3WrzSVpJJ8jb7LPtklXFISW-K0IHR98-BP8veMzhnTMAF7bf6IjCAihcAbcF4OuRJdsZEKQqZwq-e30KcZm9C2AIAF9CcZes1BWfRxjxtY2mK3liXG9tPmvqcRtLRO5tr3MfJU35v4q_jYXT3xwNZ8pvH46Fzk-2LjiLmHeEuvM1eDzgGevd0r7K7r19ur74XNz--XV9d3hS6YiIWoqtQ152ssOxroL6Dlpf9IBrUDFgDDS8bqLGvkA0Sy1pKSaIBDXUvh4HLcpV9WvLuvfs9UYhqZ4KmcURLbgqqqSpZCynqRH74h9y6ydvUnOK8FcBZmWqvsvOF2uBIytjBRY86rZ52RjtLg0nxy1KKlLltIQk-vxAkJtJD3OAUgrr-uX7JyoXV3oXgaVB7b3boHxUDNduoZhvVYqNKNqrZRjVP-fGpdwwax8Gj1SY8qznnddU284z1woX0ZTfk_874nwp_AMjzsbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294021392</pqid></control><display><type>article</type><title>Resonant antineutrino induced electron capture with low energy bound-beta beams</title><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><creator>Oldeman, R. G. C. ; Meloni, M. ; Saitta, B.</creator><creatorcontrib>Oldeman, R. G. C. ; Meloni, M. ; Saitta, B.</creatorcontrib><description>Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10
3
kg is up to one interaction per 8.3⋅10
18
decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10
21
decaying atoms, provided that extremely stringent monochromaticity conditions (10
−7
or better) are achieved in future ion beams.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-009-1209-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorption cross sections ; Antineutrinos ; Astronomy ; Astrophysics and Cosmology ; Beams (radiation) ; Beta decay ; Cross sections ; Decay rate ; Electron beams ; Electron capture ; Electrons ; Elementary Particles ; Energy storage ; Exact sciences and technology ; Hadrons ; Heavy Ions ; Ion beams ; Mathematical analysis ; Measurement Science and Instrumentation ; Neutrinos ; Nuclear Energy ; Nuclear Physics ; Oscillations ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Experimental Physics ; String Theory ; The physics of elementary particles and fields</subject><ispartof>The European physical journal. C, Particles and fields, 2010-01, Vol.65 (1-2), p.81-87, Article 81</ispartof><rights>Springer-Verlag / Società Italiana di Fisica 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</citedby><cites>FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-009-1209-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjc/s10052-009-1209-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22275987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oldeman, R. G. C.</creatorcontrib><creatorcontrib>Meloni, M.</creatorcontrib><creatorcontrib>Saitta, B.</creatorcontrib><title>Resonant antineutrino induced electron capture with low energy bound-beta beams</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10
3
kg is up to one interaction per 8.3⋅10
18
decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10
21
decaying atoms, provided that extremely stringent monochromaticity conditions (10
−7
or better) are achieved in future ion beams.</description><subject>Absorption cross sections</subject><subject>Antineutrinos</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Beams (radiation)</subject><subject>Beta decay</subject><subject>Cross sections</subject><subject>Decay rate</subject><subject>Electron beams</subject><subject>Electron capture</subject><subject>Electrons</subject><subject>Elementary Particles</subject><subject>Energy storage</subject><subject>Exact sciences and technology</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ion beams</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Neutrinos</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Experimental Physics</subject><subject>String Theory</subject><subject>The physics of elementary particles and fields</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkdtq3DAQhk1oIem2r1AMpZReOBnJsmxfhtBDIFDYJtdiLI-3WrzSVpJJ8jb7LPtklXFISW-K0IHR98-BP8veMzhnTMAF7bf6IjCAihcAbcF4OuRJdsZEKQqZwq-e30KcZm9C2AIAF9CcZes1BWfRxjxtY2mK3liXG9tPmvqcRtLRO5tr3MfJU35v4q_jYXT3xwNZ8pvH46Fzk-2LjiLmHeEuvM1eDzgGevd0r7K7r19ur74XNz--XV9d3hS6YiIWoqtQ152ssOxroL6Dlpf9IBrUDFgDDS8bqLGvkA0Sy1pKSaIBDXUvh4HLcpV9WvLuvfs9UYhqZ4KmcURLbgqqqSpZCynqRH74h9y6ydvUnOK8FcBZmWqvsvOF2uBIytjBRY86rZ52RjtLg0nxy1KKlLltIQk-vxAkJtJD3OAUgrr-uX7JyoXV3oXgaVB7b3boHxUDNduoZhvVYqNKNqrZRjVP-fGpdwwax8Gj1SY8qznnddU284z1woX0ZTfk_874nwp_AMjzsbQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Oldeman, R. G. C.</creator><creator>Meloni, M.</creator><creator>Saitta, B.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100101</creationdate><title>Resonant antineutrino induced electron capture with low energy bound-beta beams</title><author>Oldeman, R. G. C. ; Meloni, M. ; Saitta, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption cross sections</topic><topic>Antineutrinos</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Beams (radiation)</topic><topic>Beta decay</topic><topic>Cross sections</topic><topic>Decay rate</topic><topic>Electron beams</topic><topic>Electron capture</topic><topic>Electrons</topic><topic>Elementary Particles</topic><topic>Energy storage</topic><topic>Exact sciences and technology</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ion beams</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Neutrinos</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Experimental Physics</topic><topic>String Theory</topic><topic>The physics of elementary particles and fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oldeman, R. G. C.</creatorcontrib><creatorcontrib>Meloni, M.</creatorcontrib><creatorcontrib>Saitta, B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oldeman, R. G. C.</au><au>Meloni, M.</au><au>Saitta, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant antineutrino induced electron capture with low energy bound-beta beams</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>65</volume><issue>1-2</issue><spage>81</spage><epage>87</epage><pages>81-87</pages><artnum>81</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10
3
kg is up to one interaction per 8.3⋅10
18
decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10
21
decaying atoms, provided that extremely stringent monochromaticity conditions (10
−7
or better) are achieved in future ion beams.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjc/s10052-009-1209-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2010-01, Vol.65 (1-2), p.81-87, Article 81 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_proquest_miscellaneous_855674647 |
source | SpringerNature Journals; Springer Nature OA Free Journals |
subjects | Absorption cross sections Antineutrinos Astronomy Astrophysics and Cosmology Beams (radiation) Beta decay Cross sections Decay rate Electron beams Electron capture Electrons Elementary Particles Energy storage Exact sciences and technology Hadrons Heavy Ions Ion beams Mathematical analysis Measurement Science and Instrumentation Neutrinos Nuclear Energy Nuclear Physics Oscillations Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Experimental Physics String Theory The physics of elementary particles and fields |
title | Resonant antineutrino induced electron capture with low energy bound-beta beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20antineutrino%20induced%20electron%20capture%20with%C2%A0low%C2%A0energy%C2%A0bound-beta%20beams&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Oldeman,%20R.%20G.%20C.&rft.date=2010-01-01&rft.volume=65&rft.issue=1-2&rft.spage=81&rft.epage=87&rft.pages=81-87&rft.artnum=81&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-009-1209-6&rft_dat=%3Cgale_proqu%3EA364855990%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294021392&rft_id=info:pmid/&rft_galeid=A364855990&rfr_iscdi=true |