Resonant antineutrino induced electron capture with low energy bound-beta beams

Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2010-01, Vol.65 (1-2), p.81-87, Article 81
Hauptverfasser: Oldeman, R. G. C., Meloni, M., Saitta, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1-2
container_start_page 81
container_title The European physical journal. C, Particles and fields
container_volume 65
creator Oldeman, R. G. C.
Meloni, M.
Saitta, B.
description Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10 3  kg is up to one interaction per 8.3⋅10 18 decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10 21 decaying atoms, provided that extremely stringent monochromaticity conditions (10 −7 or better) are achieved in future ion beams.
doi_str_mv 10.1140/epjc/s10052-009-1209-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_855674647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364855990</galeid><sourcerecordid>A364855990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</originalsourceid><addsrcrecordid>eNqFkdtq3DAQhk1oIem2r1AMpZReOBnJsmxfhtBDIFDYJtdiLI-3WrzSVpJJ8jb7LPtklXFISW-K0IHR98-BP8veMzhnTMAF7bf6IjCAihcAbcF4OuRJdsZEKQqZwq-e30KcZm9C2AIAF9CcZes1BWfRxjxtY2mK3liXG9tPmvqcRtLRO5tr3MfJU35v4q_jYXT3xwNZ8pvH46Fzk-2LjiLmHeEuvM1eDzgGevd0r7K7r19ur74XNz--XV9d3hS6YiIWoqtQ152ssOxroL6Dlpf9IBrUDFgDDS8bqLGvkA0Sy1pKSaIBDXUvh4HLcpV9WvLuvfs9UYhqZ4KmcURLbgqqqSpZCynqRH74h9y6ydvUnOK8FcBZmWqvsvOF2uBIytjBRY86rZ52RjtLg0nxy1KKlLltIQk-vxAkJtJD3OAUgrr-uX7JyoXV3oXgaVB7b3boHxUDNduoZhvVYqNKNqrZRjVP-fGpdwwax8Gj1SY8qznnddU284z1woX0ZTfk_874nwp_AMjzsbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294021392</pqid></control><display><type>article</type><title>Resonant antineutrino induced electron capture with low energy bound-beta beams</title><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><creator>Oldeman, R. G. C. ; Meloni, M. ; Saitta, B.</creator><creatorcontrib>Oldeman, R. G. C. ; Meloni, M. ; Saitta, B.</creatorcontrib><description>Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10 3  kg is up to one interaction per 8.3⋅10 18 decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10 21 decaying atoms, provided that extremely stringent monochromaticity conditions (10 −7 or better) are achieved in future ion beams.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-009-1209-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorption cross sections ; Antineutrinos ; Astronomy ; Astrophysics and Cosmology ; Beams (radiation) ; Beta decay ; Cross sections ; Decay rate ; Electron beams ; Electron capture ; Electrons ; Elementary Particles ; Energy storage ; Exact sciences and technology ; Hadrons ; Heavy Ions ; Ion beams ; Mathematical analysis ; Measurement Science and Instrumentation ; Neutrinos ; Nuclear Energy ; Nuclear Physics ; Oscillations ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Experimental Physics ; String Theory ; The physics of elementary particles and fields</subject><ispartof>The European physical journal. C, Particles and fields, 2010-01, Vol.65 (1-2), p.81-87, Article 81</ispartof><rights>Springer-Verlag / Società Italiana di Fisica 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</citedby><cites>FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-009-1209-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjc/s10052-009-1209-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22275987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oldeman, R. G. C.</creatorcontrib><creatorcontrib>Meloni, M.</creatorcontrib><creatorcontrib>Saitta, B.</creatorcontrib><title>Resonant antineutrino induced electron capture with low energy bound-beta beams</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10 3  kg is up to one interaction per 8.3⋅10 18 decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10 21 decaying atoms, provided that extremely stringent monochromaticity conditions (10 −7 or better) are achieved in future ion beams.</description><subject>Absorption cross sections</subject><subject>Antineutrinos</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Beams (radiation)</subject><subject>Beta decay</subject><subject>Cross sections</subject><subject>Decay rate</subject><subject>Electron beams</subject><subject>Electron capture</subject><subject>Electrons</subject><subject>Elementary Particles</subject><subject>Energy storage</subject><subject>Exact sciences and technology</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ion beams</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Neutrinos</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Experimental Physics</subject><subject>String Theory</subject><subject>The physics of elementary particles and fields</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkdtq3DAQhk1oIem2r1AMpZReOBnJsmxfhtBDIFDYJtdiLI-3WrzSVpJJ8jb7LPtklXFISW-K0IHR98-BP8veMzhnTMAF7bf6IjCAihcAbcF4OuRJdsZEKQqZwq-e30KcZm9C2AIAF9CcZes1BWfRxjxtY2mK3liXG9tPmvqcRtLRO5tr3MfJU35v4q_jYXT3xwNZ8pvH46Fzk-2LjiLmHeEuvM1eDzgGevd0r7K7r19ur74XNz--XV9d3hS6YiIWoqtQ152ssOxroL6Dlpf9IBrUDFgDDS8bqLGvkA0Sy1pKSaIBDXUvh4HLcpV9WvLuvfs9UYhqZ4KmcURLbgqqqSpZCynqRH74h9y6ydvUnOK8FcBZmWqvsvOF2uBIytjBRY86rZ52RjtLg0nxy1KKlLltIQk-vxAkJtJD3OAUgrr-uX7JyoXV3oXgaVB7b3boHxUDNduoZhvVYqNKNqrZRjVP-fGpdwwax8Gj1SY8qznnddU284z1woX0ZTfk_874nwp_AMjzsbQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Oldeman, R. G. C.</creator><creator>Meloni, M.</creator><creator>Saitta, B.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100101</creationdate><title>Resonant antineutrino induced electron capture with low energy bound-beta beams</title><author>Oldeman, R. G. C. ; Meloni, M. ; Saitta, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-4b5ac7b65a3d70edb0923df48ac10180823807ad5a1f6a37666e480c07d6ff263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption cross sections</topic><topic>Antineutrinos</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Beams (radiation)</topic><topic>Beta decay</topic><topic>Cross sections</topic><topic>Decay rate</topic><topic>Electron beams</topic><topic>Electron capture</topic><topic>Electrons</topic><topic>Elementary Particles</topic><topic>Energy storage</topic><topic>Exact sciences and technology</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ion beams</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Neutrinos</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Experimental Physics</topic><topic>String Theory</topic><topic>The physics of elementary particles and fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oldeman, R. G. C.</creatorcontrib><creatorcontrib>Meloni, M.</creatorcontrib><creatorcontrib>Saitta, B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oldeman, R. G. C.</au><au>Meloni, M.</au><au>Saitta, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant antineutrino induced electron capture with low energy bound-beta beams</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>65</volume><issue>1-2</issue><spage>81</spage><epage>87</epage><pages>81-87</pages><artnum>81</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Antineutrino induced electron capture is a resonant process that can have a large cross-section for beams of monochromatic antineutrinos. We calculate the cross-section of this process and investigate an experimental setup where monochromatic antineutrinos are produced from the bound-beta decay of fully ionized radioactive atoms in a storage ring. If the energy between the source and the target is well matched, the cross-sections can be significantly larger than the cross-sections of commonly used non-resonant processes. The rate that can be achieved at a small distance between the source and two targets of 10 3  kg is up to one interaction per 8.3⋅10 18 decaying atoms. For a source-target distance corresponding to the first atmospheric neutrino oscillation maximum, the largest rate is one interaction per 3.2⋅10 21 decaying atoms, provided that extremely stringent monochromaticity conditions (10 −7 or better) are achieved in future ion beams.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjc/s10052-009-1209-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2010-01, Vol.65 (1-2), p.81-87, Article 81
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_miscellaneous_855674647
source SpringerNature Journals; Springer Nature OA Free Journals
subjects Absorption cross sections
Antineutrinos
Astronomy
Astrophysics and Cosmology
Beams (radiation)
Beta decay
Cross sections
Decay rate
Electron beams
Electron capture
Electrons
Elementary Particles
Energy storage
Exact sciences and technology
Hadrons
Heavy Ions
Ion beams
Mathematical analysis
Measurement Science and Instrumentation
Neutrinos
Nuclear Energy
Nuclear Physics
Oscillations
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Experimental Physics
String Theory
The physics of elementary particles and fields
title Resonant antineutrino induced electron capture with low energy bound-beta beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20antineutrino%20induced%20electron%20capture%20with%C2%A0low%C2%A0energy%C2%A0bound-beta%20beams&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Oldeman,%20R.%20G.%20C.&rft.date=2010-01-01&rft.volume=65&rft.issue=1-2&rft.spage=81&rft.epage=87&rft.pages=81-87&rft.artnum=81&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-009-1209-6&rft_dat=%3Cgale_proqu%3EA364855990%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294021392&rft_id=info:pmid/&rft_galeid=A364855990&rfr_iscdi=true