Efficiency comparison of M-estimates for scale at t-distributions
Using Fisher's information fort-distributions, the absolute asymptotic efficiency of some M-estimates for scale with known location parameter is calculated and graphically illustrated. The compared estimators are the standard deviation S^sub *^, the mean absolute deviation, called mean deviatio...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2000-01, Vol.41 (1), p.53-64 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 41 |
creator | Bachmaier, Martin |
description | Using Fisher's information fort-distributions, the absolute asymptotic efficiency of some M-estimates for scale with known location parameter is calculated and graphically illustrated. The compared estimators are the standard deviation S^sub *^, the mean absolute deviation, called mean deviation D^sub *^, the median absolute deviation, called MAD^sub *^, and some M-estimates for scale, one, which is very robust, and another one with high asymptotic efficiency fort-distributions close to the normal. The last one is considered with monotone (in the positive field) and with very late redescending χ-function too. Also the [sigma][hat]^sub *^-arch, an alternative and generalized excess measure defined as the double relative asymptotic variance of the underlying scale estimator [sigma][hat]^sub *^ in the previous paper, is calculated fort-distributions and graphically illustrated, because there is the relation that the higher the asymptotic efficiency of [sigma][hat]^sub *^ is, the lower is the corresponding [sigma][hat]^sub *^-arch. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF02925676 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855673387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855673387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f50cdc83b3e193e3cdb251e0ca2e3fd41ddbfc5cd37593141b076dbee4da82743</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgCtbqxl8QdCEIo0nuTB7LWloVKm50PWTygJTppCYzC_-9kQqC4OpuPi7nHIQuKbmjhIj7hzVhijVc8CM0o5xCpYSSx2hGFLCqIYyforOct4RQKSWZocXK-2CCG8wnNnG31ynkOODo8Uvl8hh2enQZ-5hwNrp3WI94rGzIYwrdNIY45HN04nWf3cXPnaP39ept-VRtXh-fl4tNZYDysfINMdZI6MBRBQ6M7VhDHTGaOfC2ptZ23jTGgmgU0Jp2RHDbOVdbLZmoYY5uDn_3KX5MJVu7C9m4vteDi1NuZVNqA0hR5PUfuY1TGkq4lgkpSK1EgXN09a8CrhTloAq6PSCTYs7J-Xafyibps6Wk_V68_V0cvgC-pHHm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236991639</pqid></control><display><type>article</type><title>Efficiency comparison of M-estimates for scale at t-distributions</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bachmaier, Martin</creator><creatorcontrib>Bachmaier, Martin</creatorcontrib><description>Using Fisher's information fort-distributions, the absolute asymptotic efficiency of some M-estimates for scale with known location parameter is calculated and graphically illustrated. The compared estimators are the standard deviation S^sub *^, the mean absolute deviation, called mean deviation D^sub *^, the median absolute deviation, called MAD^sub *^, and some M-estimates for scale, one, which is very robust, and another one with high asymptotic efficiency fort-distributions close to the normal. The last one is considered with monotone (in the positive field) and with very late redescending χ-function too. Also the [sigma][hat]^sub *^-arch, an alternative and generalized excess measure defined as the double relative asymptotic variance of the underlying scale estimator [sigma][hat]^sub *^ in the previous paper, is calculated fort-distributions and graphically illustrated, because there is the relation that the higher the asymptotic efficiency of [sigma][hat]^sub *^ is, the lower is the corresponding [sigma][hat]^sub *^-arch. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/BF02925676</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computational efficiency ; Computing time ; Deviation ; Efficiency ; Estimates ; Estimators ; Mathematical analysis ; Mean ; Normal distribution ; Random variables ; Standard deviation ; Variance</subject><ispartof>Statistical papers (Berlin, Germany), 2000-01, Vol.41 (1), p.53-64</ispartof><rights>Springer-Verlag 2000</rights><rights>Springer-Verlag 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f50cdc83b3e193e3cdb251e0ca2e3fd41ddbfc5cd37593141b076dbee4da82743</citedby><cites>FETCH-LOGICAL-c316t-f50cdc83b3e193e3cdb251e0ca2e3fd41ddbfc5cd37593141b076dbee4da82743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bachmaier, Martin</creatorcontrib><title>Efficiency comparison of M-estimates for scale at t-distributions</title><title>Statistical papers (Berlin, Germany)</title><description>Using Fisher's information fort-distributions, the absolute asymptotic efficiency of some M-estimates for scale with known location parameter is calculated and graphically illustrated. The compared estimators are the standard deviation S^sub *^, the mean absolute deviation, called mean deviation D^sub *^, the median absolute deviation, called MAD^sub *^, and some M-estimates for scale, one, which is very robust, and another one with high asymptotic efficiency fort-distributions close to the normal. The last one is considered with monotone (in the positive field) and with very late redescending χ-function too. Also the [sigma][hat]^sub *^-arch, an alternative and generalized excess measure defined as the double relative asymptotic variance of the underlying scale estimator [sigma][hat]^sub *^ in the previous paper, is calculated fort-distributions and graphically illustrated, because there is the relation that the higher the asymptotic efficiency of [sigma][hat]^sub *^ is, the lower is the corresponding [sigma][hat]^sub *^-arch. [PUBLICATION ABSTRACT]</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Deviation</subject><subject>Efficiency</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Mean</subject><subject>Normal distribution</subject><subject>Random variables</subject><subject>Standard deviation</subject><subject>Variance</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10EtLAzEUBeAgCtbqxl8QdCEIo0nuTB7LWloVKm50PWTygJTppCYzC_-9kQqC4OpuPi7nHIQuKbmjhIj7hzVhijVc8CM0o5xCpYSSx2hGFLCqIYyforOct4RQKSWZocXK-2CCG8wnNnG31ynkOODo8Uvl8hh2enQZ-5hwNrp3WI94rGzIYwrdNIY45HN04nWf3cXPnaP39ept-VRtXh-fl4tNZYDysfINMdZI6MBRBQ6M7VhDHTGaOfC2ptZ23jTGgmgU0Jp2RHDbOVdbLZmoYY5uDn_3KX5MJVu7C9m4vteDi1NuZVNqA0hR5PUfuY1TGkq4lgkpSK1EgXN09a8CrhTloAq6PSCTYs7J-Xafyibps6Wk_V68_V0cvgC-pHHm</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Bachmaier, Martin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>PRINS</scope><scope>H8D</scope></search><sort><creationdate>20000101</creationdate><title>Efficiency comparison of M-estimates for scale at t-distributions</title><author>Bachmaier, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f50cdc83b3e193e3cdb251e0ca2e3fd41ddbfc5cd37593141b076dbee4da82743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Deviation</topic><topic>Efficiency</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Mean</topic><topic>Normal distribution</topic><topic>Random variables</topic><topic>Standard deviation</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachmaier, Martin</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><collection>Aerospace Database</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachmaier, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency comparison of M-estimates for scale at t-distributions</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>41</volume><issue>1</issue><spage>53</spage><epage>64</epage><pages>53-64</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Using Fisher's information fort-distributions, the absolute asymptotic efficiency of some M-estimates for scale with known location parameter is calculated and graphically illustrated. The compared estimators are the standard deviation S^sub *^, the mean absolute deviation, called mean deviation D^sub *^, the median absolute deviation, called MAD^sub *^, and some M-estimates for scale, one, which is very robust, and another one with high asymptotic efficiency fort-distributions close to the normal. The last one is considered with monotone (in the positive field) and with very late redescending χ-function too. Also the [sigma][hat]^sub *^-arch, an alternative and generalized excess measure defined as the double relative asymptotic variance of the underlying scale estimator [sigma][hat]^sub *^ in the previous paper, is calculated fort-distributions and graphically illustrated, because there is the relation that the higher the asymptotic efficiency of [sigma][hat]^sub *^ is, the lower is the corresponding [sigma][hat]^sub *^-arch. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02925676</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2000-01, Vol.41 (1), p.53-64 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_miscellaneous_855673387 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Asymptotic methods Asymptotic properties Computational efficiency Computing time Deviation Efficiency Estimates Estimators Mathematical analysis Mean Normal distribution Random variables Standard deviation Variance |
title | Efficiency comparison of M-estimates for scale at t-distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20comparison%20of%20M-estimates%20for%20scale%20at%20t-distributions&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Bachmaier,%20Martin&rft.date=2000-01-01&rft.volume=41&rft.issue=1&rft.spage=53&rft.epage=64&rft.pages=53-64&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/BF02925676&rft_dat=%3Cproquest_cross%3E855673387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236991639&rft_id=info:pmid/&rfr_iscdi=true |