Ring-shaped neuronal networks: a platform to study persistent activity
Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop an...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2011-03, Vol.11 (6), p.1081-1088 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1088 |
---|---|
container_issue | 6 |
container_start_page | 1081 |
container_title | Lab on a chip |
container_volume | 11 |
creator | Vishwanathan, Ashwin Bi, Guo-Qiang Zeringue, Henry C |
description | Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM). |
doi_str_mv | 10.1039/c0lc00450b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_854568900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>854568900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMozji68QdId4JQfflqU3cyOCoMCKLrkqavWm2bmqRK_72VGcfVvVwOd3EIOaVwSYFnVwYaAyAkFHtkTkXKY6Aq29_1LJ2RI-_fAagUiTokM0ZZxhVL5mT1VHevsX_TPZZRh4OznW6mEr6t-_DXkY76RofKujYKNvJhKMeoR-drH7ALkTah_qrDeEwOKt14PNnmgrysbp-X9_H68e5hebOODVNJiDNKGZe6YoqDQQ0VosgUTRlWUheyUongQKk0GlRSIkybVApMWqRMpAnjC3K--e2d_RzQh7ytvcGm0R3awedKCpmoDGAiLzakcdZ7h1Xeu7rVbswp5L_a8n9tE3y2vR2KFssd-ueJ_wAFk2gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854568900</pqid></control><display><type>article</type><title>Ring-shaped neuronal networks: a platform to study persistent activity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Vishwanathan, Ashwin ; Bi, Guo-Qiang ; Zeringue, Henry C</creator><creatorcontrib>Vishwanathan, Ashwin ; Bi, Guo-Qiang ; Zeringue, Henry C</creatorcontrib><description>Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c0lc00450b</identifier><identifier>PMID: 21293826</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Bicuculline - analogs & derivatives ; Bicuculline - chemistry ; Calcium - metabolism ; Cells, Cultured ; Egtazic Acid - chemistry ; Hippocampus - cytology ; Molecular Imaging ; Nerve Net - physiology ; Neurotransmitter Agents - metabolism ; Polymers - chemistry ; Rats</subject><ispartof>Lab on a chip, 2011-03, Vol.11 (6), p.1081-1088</ispartof><rights>This journal is © The Royal Society of Chemistry 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</citedby><cites>FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21293826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vishwanathan, Ashwin</creatorcontrib><creatorcontrib>Bi, Guo-Qiang</creatorcontrib><creatorcontrib>Zeringue, Henry C</creatorcontrib><title>Ring-shaped neuronal networks: a platform to study persistent activity</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).</description><subject>Animals</subject><subject>Bicuculline - analogs & derivatives</subject><subject>Bicuculline - chemistry</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Egtazic Acid - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Molecular Imaging</subject><subject>Nerve Net - physiology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Polymers - chemistry</subject><subject>Rats</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAURYMozji68QdId4JQfflqU3cyOCoMCKLrkqavWm2bmqRK_72VGcfVvVwOd3EIOaVwSYFnVwYaAyAkFHtkTkXKY6Aq29_1LJ2RI-_fAagUiTokM0ZZxhVL5mT1VHevsX_TPZZRh4OznW6mEr6t-_DXkY76RofKujYKNvJhKMeoR-drH7ALkTah_qrDeEwOKt14PNnmgrysbp-X9_H68e5hebOODVNJiDNKGZe6YoqDQQ0VosgUTRlWUheyUongQKk0GlRSIkybVApMWqRMpAnjC3K--e2d_RzQh7ytvcGm0R3awedKCpmoDGAiLzakcdZ7h1Xeu7rVbswp5L_a8n9tE3y2vR2KFssd-ueJ_wAFk2gQ</recordid><startdate>20110321</startdate><enddate>20110321</enddate><creator>Vishwanathan, Ashwin</creator><creator>Bi, Guo-Qiang</creator><creator>Zeringue, Henry C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110321</creationdate><title>Ring-shaped neuronal networks: a platform to study persistent activity</title><author>Vishwanathan, Ashwin ; Bi, Guo-Qiang ; Zeringue, Henry C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bicuculline - analogs & derivatives</topic><topic>Bicuculline - chemistry</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Egtazic Acid - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Molecular Imaging</topic><topic>Nerve Net - physiology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Polymers - chemistry</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishwanathan, Ashwin</creatorcontrib><creatorcontrib>Bi, Guo-Qiang</creatorcontrib><creatorcontrib>Zeringue, Henry C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishwanathan, Ashwin</au><au>Bi, Guo-Qiang</au><au>Zeringue, Henry C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ring-shaped neuronal networks: a platform to study persistent activity</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2011-03-21</date><risdate>2011</risdate><volume>11</volume><issue>6</issue><spage>1081</spage><epage>1088</epage><pages>1081-1088</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).</abstract><cop>England</cop><pmid>21293826</pmid><doi>10.1039/c0lc00450b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2011-03, Vol.11 (6), p.1081-1088 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_854568900 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Bicuculline - analogs & derivatives Bicuculline - chemistry Calcium - metabolism Cells, Cultured Egtazic Acid - chemistry Hippocampus - cytology Molecular Imaging Nerve Net - physiology Neurotransmitter Agents - metabolism Polymers - chemistry Rats |
title | Ring-shaped neuronal networks: a platform to study persistent activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ring-shaped%20neuronal%20networks:%20a%20platform%20to%20study%20persistent%20activity&rft.jtitle=Lab%20on%20a%20chip&rft.au=Vishwanathan,%20Ashwin&rft.date=2011-03-21&rft.volume=11&rft.issue=6&rft.spage=1081&rft.epage=1088&rft.pages=1081-1088&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c0lc00450b&rft_dat=%3Cproquest_cross%3E854568900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854568900&rft_id=info:pmid/21293826&rfr_iscdi=true |