Ring-shaped neuronal networks: a platform to study persistent activity

Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2011-03, Vol.11 (6), p.1081-1088
Hauptverfasser: Vishwanathan, Ashwin, Bi, Guo-Qiang, Zeringue, Henry C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1088
container_issue 6
container_start_page 1081
container_title Lab on a chip
container_volume 11
creator Vishwanathan, Ashwin
Bi, Guo-Qiang
Zeringue, Henry C
description Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).
doi_str_mv 10.1039/c0lc00450b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_854568900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>854568900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMozji68QdId4JQfflqU3cyOCoMCKLrkqavWm2bmqRK_72VGcfVvVwOd3EIOaVwSYFnVwYaAyAkFHtkTkXKY6Aq29_1LJ2RI-_fAagUiTokM0ZZxhVL5mT1VHevsX_TPZZRh4OznW6mEr6t-_DXkY76RofKujYKNvJhKMeoR-drH7ALkTah_qrDeEwOKt14PNnmgrysbp-X9_H68e5hebOODVNJiDNKGZe6YoqDQQ0VosgUTRlWUheyUongQKk0GlRSIkybVApMWqRMpAnjC3K--e2d_RzQh7ytvcGm0R3awedKCpmoDGAiLzakcdZ7h1Xeu7rVbswp5L_a8n9tE3y2vR2KFssd-ueJ_wAFk2gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854568900</pqid></control><display><type>article</type><title>Ring-shaped neuronal networks: a platform to study persistent activity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Vishwanathan, Ashwin ; Bi, Guo-Qiang ; Zeringue, Henry C</creator><creatorcontrib>Vishwanathan, Ashwin ; Bi, Guo-Qiang ; Zeringue, Henry C</creatorcontrib><description>Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c0lc00450b</identifier><identifier>PMID: 21293826</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Bicuculline - analogs &amp; derivatives ; Bicuculline - chemistry ; Calcium - metabolism ; Cells, Cultured ; Egtazic Acid - chemistry ; Hippocampus - cytology ; Molecular Imaging ; Nerve Net - physiology ; Neurotransmitter Agents - metabolism ; Polymers - chemistry ; Rats</subject><ispartof>Lab on a chip, 2011-03, Vol.11 (6), p.1081-1088</ispartof><rights>This journal is © The Royal Society of Chemistry 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</citedby><cites>FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21293826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vishwanathan, Ashwin</creatorcontrib><creatorcontrib>Bi, Guo-Qiang</creatorcontrib><creatorcontrib>Zeringue, Henry C</creatorcontrib><title>Ring-shaped neuronal networks: a platform to study persistent activity</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).</description><subject>Animals</subject><subject>Bicuculline - analogs &amp; derivatives</subject><subject>Bicuculline - chemistry</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Egtazic Acid - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Molecular Imaging</subject><subject>Nerve Net - physiology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Polymers - chemistry</subject><subject>Rats</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAURYMozji68QdId4JQfflqU3cyOCoMCKLrkqavWm2bmqRK_72VGcfVvVwOd3EIOaVwSYFnVwYaAyAkFHtkTkXKY6Aq29_1LJ2RI-_fAagUiTokM0ZZxhVL5mT1VHevsX_TPZZRh4OznW6mEr6t-_DXkY76RofKujYKNvJhKMeoR-drH7ALkTah_qrDeEwOKt14PNnmgrysbp-X9_H68e5hebOODVNJiDNKGZe6YoqDQQ0VosgUTRlWUheyUongQKk0GlRSIkybVApMWqRMpAnjC3K--e2d_RzQh7ytvcGm0R3awedKCpmoDGAiLzakcdZ7h1Xeu7rVbswp5L_a8n9tE3y2vR2KFssd-ueJ_wAFk2gQ</recordid><startdate>20110321</startdate><enddate>20110321</enddate><creator>Vishwanathan, Ashwin</creator><creator>Bi, Guo-Qiang</creator><creator>Zeringue, Henry C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110321</creationdate><title>Ring-shaped neuronal networks: a platform to study persistent activity</title><author>Vishwanathan, Ashwin ; Bi, Guo-Qiang ; Zeringue, Henry C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-911235af2830cea0fee498172ef5ab5f86430115ca086de0ab55880c7b7247623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bicuculline - analogs &amp; derivatives</topic><topic>Bicuculline - chemistry</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Egtazic Acid - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Molecular Imaging</topic><topic>Nerve Net - physiology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Polymers - chemistry</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishwanathan, Ashwin</creatorcontrib><creatorcontrib>Bi, Guo-Qiang</creatorcontrib><creatorcontrib>Zeringue, Henry C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishwanathan, Ashwin</au><au>Bi, Guo-Qiang</au><au>Zeringue, Henry C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ring-shaped neuronal networks: a platform to study persistent activity</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2011-03-21</date><risdate>2011</risdate><volume>11</volume><issue>6</issue><spage>1081</spage><epage>1088</epage><pages>1081-1088</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Persistent activity in the brain is involved in working memory and motor planning. The ability of the brain to hold information 'online' long after an initiating stimulus is a hallmark of brain areas such as the prefrontal cortex. Recurrent network loops such as the thalamocortical loop and reciprocal loops in the cortex are potential substrates that can support such activity. However, native brain circuitry makes it difficult to study mechanisms underlying such persistent activity. Here we propose a platform to study synaptic mechanisms of such persistent activity by constraining neuronal networks to a recurrent loop like geometry. Using a polymer stamping technique, adhesive proteins are transferred onto glass substrates in a precise ring shape. Primary rat hippocampal cultures were capable of forming ring-shaped networks containing 40-60 neurons. Calcium imaging of these networks show evoked persistent activity in an all-or-none manner. Blocking inhibition with bicuculline methaiodide (BMI) leads to an increase in the duration of persistent activity. These persistent phases were abolished by blockade of asynchronous neurotransmitter release by ethylene glycol tetraacetic acid (EGTA-AM).</abstract><cop>England</cop><pmid>21293826</pmid><doi>10.1039/c0lc00450b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2011-03, Vol.11 (6), p.1081-1088
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_854568900
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Bicuculline - analogs & derivatives
Bicuculline - chemistry
Calcium - metabolism
Cells, Cultured
Egtazic Acid - chemistry
Hippocampus - cytology
Molecular Imaging
Nerve Net - physiology
Neurotransmitter Agents - metabolism
Polymers - chemistry
Rats
title Ring-shaped neuronal networks: a platform to study persistent activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ring-shaped%20neuronal%20networks:%20a%20platform%20to%20study%20persistent%20activity&rft.jtitle=Lab%20on%20a%20chip&rft.au=Vishwanathan,%20Ashwin&rft.date=2011-03-21&rft.volume=11&rft.issue=6&rft.spage=1081&rft.epage=1088&rft.pages=1081-1088&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c0lc00450b&rft_dat=%3Cproquest_cross%3E854568900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854568900&rft_id=info:pmid/21293826&rfr_iscdi=true