Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide
Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-03, Vol.45 (5), p.1847-1852 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1852 |
---|---|
container_issue | 5 |
container_start_page | 1847 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Wu, Lingling Beard, Brian L Roden, Eric E Johnson, Clark M |
description | Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature. |
doi_str_mv | 10.1021/es103171x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853995346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299588031</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-eb164063d907fba45dface311e867f8ff6f80452202f845a7b3750861faac8cd3</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiq4fB_-ABEHUQ3WmadL0uIqrBUFEBW9lmiZQ6bZr0kX993bZ1QW9ZCA8zLy8jB0iXCDEeGkDgsAUPzfYCGUMkdQSN9kIAEWUCfW6w3ZDeAOAWIDeZjsxxlkilRqxx6eeysby3Hctz0PXdzPLJ55MX3ctLR5-ZfsPa1s-fp_bbh74xJ7l-TmntuJ3X5VffnlfG_7wWVd2n205aoI9WM099jK5eb6-i-4fbvPr8X1EiUj7yJaoElCiyiB1JSWycmSsQLRapU47p5yGRMYxxE4nktJSpBK0QkdktKnEHjtd7p35bkgW-mJaB2ObhtpFzEJLkWVSJGqQx3_kWzf37RBuQBolqDQb0PkSGd-F4K0rZr6ekv8qEIpFy8Vvy4M9Wi2cl1Nb_cqfWgdwsgIUDDXOU2vqsHZCZ6BRrB2ZsA71_-A3b9aOjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858150679</pqid></control><display><type>article</type><title>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Wu, Lingling ; Beard, Brian L ; Roden, Eric E ; Johnson, Clark M</creator><creatorcontrib>Wu, Lingling ; Beard, Brian L ; Roden, Eric E ; Johnson, Clark M</creatorcontrib><description>Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es103171x</identifier><identifier>PMID: 21294566</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Aqueous chemistry ; Chemical Fractionation ; Chemical precipitation ; Earth sciences ; Earth, ocean, space ; Environmental Processes ; Environmental science ; Equilibrium ; Exact sciences and technology ; Ferric Compounds - analysis ; Ferric Compounds - chemistry ; Geochemistry ; Iron ; Iron Isotopes - analysis ; Iron Isotopes - chemistry ; Isotope geochemistry ; Isotope geochemistry. Geochronology ; Isotopes ; Kinetics ; Mineralogy ; Oxidation-Reduction ; Silicates ; Silicon Dioxide - chemistry ; Solution chemistry ; Water geochemistry</subject><ispartof>Environmental science & technology, 2011-03, Vol.45 (5), p.1847-1852</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-eb164063d907fba45dface311e867f8ff6f80452202f845a7b3750861faac8cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es103171x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es103171x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23890813$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21294566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Beard, Brian L</creatorcontrib><creatorcontrib>Roden, Eric E</creatorcontrib><creatorcontrib>Johnson, Clark M</creatorcontrib><title>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.</description><subject>Adsorption</subject><subject>Aqueous chemistry</subject><subject>Chemical Fractionation</subject><subject>Chemical precipitation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental Processes</subject><subject>Environmental science</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - analysis</subject><subject>Ferric Compounds - chemistry</subject><subject>Geochemistry</subject><subject>Iron</subject><subject>Iron Isotopes - analysis</subject><subject>Iron Isotopes - chemistry</subject><subject>Isotope geochemistry</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Mineralogy</subject><subject>Oxidation-Reduction</subject><subject>Silicates</subject><subject>Silicon Dioxide - chemistry</subject><subject>Solution chemistry</subject><subject>Water geochemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LxDAQBuAgiq4fB_-ABEHUQ3WmadL0uIqrBUFEBW9lmiZQ6bZr0kX993bZ1QW9ZCA8zLy8jB0iXCDEeGkDgsAUPzfYCGUMkdQSN9kIAEWUCfW6w3ZDeAOAWIDeZjsxxlkilRqxx6eeysby3Hctz0PXdzPLJ55MX3ctLR5-ZfsPa1s-fp_bbh74xJ7l-TmntuJ3X5VffnlfG_7wWVd2n205aoI9WM099jK5eb6-i-4fbvPr8X1EiUj7yJaoElCiyiB1JSWycmSsQLRapU47p5yGRMYxxE4nktJSpBK0QkdktKnEHjtd7p35bkgW-mJaB2ObhtpFzEJLkWVSJGqQx3_kWzf37RBuQBolqDQb0PkSGd-F4K0rZr6ekv8qEIpFy8Vvy4M9Wi2cl1Nb_cqfWgdwsgIUDDXOU2vqsHZCZ6BRrB2ZsA71_-A3b9aOjw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Wu, Lingling</creator><creator>Beard, Brian L</creator><creator>Roden, Eric E</creator><creator>Johnson, Clark M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</title><author>Wu, Lingling ; Beard, Brian L ; Roden, Eric E ; Johnson, Clark M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-eb164063d907fba45dface311e867f8ff6f80452202f845a7b3750861faac8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Aqueous chemistry</topic><topic>Chemical Fractionation</topic><topic>Chemical precipitation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental Processes</topic><topic>Environmental science</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - analysis</topic><topic>Ferric Compounds - chemistry</topic><topic>Geochemistry</topic><topic>Iron</topic><topic>Iron Isotopes - analysis</topic><topic>Iron Isotopes - chemistry</topic><topic>Isotope geochemistry</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Mineralogy</topic><topic>Oxidation-Reduction</topic><topic>Silicates</topic><topic>Silicon Dioxide - chemistry</topic><topic>Solution chemistry</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Beard, Brian L</creatorcontrib><creatorcontrib>Roden, Eric E</creatorcontrib><creatorcontrib>Johnson, Clark M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lingling</au><au>Beard, Brian L</au><au>Roden, Eric E</au><au>Johnson, Clark M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>45</volume><issue>5</issue><spage>1847</spage><epage>1852</epage><pages>1847-1852</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21294566</pmid><doi>10.1021/es103171x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-03, Vol.45 (5), p.1847-1852 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_853995346 |
source | MEDLINE; ACS Journals: American Chemical Society Web Editions |
subjects | Adsorption Aqueous chemistry Chemical Fractionation Chemical precipitation Earth sciences Earth, ocean, space Environmental Processes Environmental science Equilibrium Exact sciences and technology Ferric Compounds - analysis Ferric Compounds - chemistry Geochemistry Iron Iron Isotopes - analysis Iron Isotopes - chemistry Isotope geochemistry Isotope geochemistry. Geochronology Isotopes Kinetics Mineralogy Oxidation-Reduction Silicates Silicon Dioxide - chemistry Solution chemistry Water geochemistry |
title | Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Iron%20Isotope%20Fractionation%20Between%20Aqueous%20Fe(II)%20and%20Hydrous%20Ferric%20Oxide&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wu,%20Lingling&rft.date=2011-03-01&rft.volume=45&rft.issue=5&rft.spage=1847&rft.epage=1852&rft.pages=1847-1852&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es103171x&rft_dat=%3Cproquest_cross%3E2299588031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858150679&rft_id=info:pmid/21294566&rfr_iscdi=true |