Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide

Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-03, Vol.45 (5), p.1847-1852
Hauptverfasser: Wu, Lingling, Beard, Brian L, Roden, Eric E, Johnson, Clark M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1852
container_issue 5
container_start_page 1847
container_title Environmental science & technology
container_volume 45
creator Wu, Lingling
Beard, Brian L
Roden, Eric E
Johnson, Clark M
description Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.
doi_str_mv 10.1021/es103171x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853995346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299588031</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-eb164063d907fba45dface311e867f8ff6f80452202f845a7b3750861faac8cd3</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiq4fB_-ABEHUQ3WmadL0uIqrBUFEBW9lmiZQ6bZr0kX993bZ1QW9ZCA8zLy8jB0iXCDEeGkDgsAUPzfYCGUMkdQSN9kIAEWUCfW6w3ZDeAOAWIDeZjsxxlkilRqxx6eeysby3Hctz0PXdzPLJ55MX3ctLR5-ZfsPa1s-fp_bbh74xJ7l-TmntuJ3X5VffnlfG_7wWVd2n205aoI9WM099jK5eb6-i-4fbvPr8X1EiUj7yJaoElCiyiB1JSWycmSsQLRapU47p5yGRMYxxE4nktJSpBK0QkdktKnEHjtd7p35bkgW-mJaB2ObhtpFzEJLkWVSJGqQx3_kWzf37RBuQBolqDQb0PkSGd-F4K0rZr6ekv8qEIpFy8Vvy4M9Wi2cl1Nb_cqfWgdwsgIUDDXOU2vqsHZCZ6BRrB2ZsA71_-A3b9aOjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858150679</pqid></control><display><type>article</type><title>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Wu, Lingling ; Beard, Brian L ; Roden, Eric E ; Johnson, Clark M</creator><creatorcontrib>Wu, Lingling ; Beard, Brian L ; Roden, Eric E ; Johnson, Clark M</creatorcontrib><description>Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es103171x</identifier><identifier>PMID: 21294566</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Aqueous chemistry ; Chemical Fractionation ; Chemical precipitation ; Earth sciences ; Earth, ocean, space ; Environmental Processes ; Environmental science ; Equilibrium ; Exact sciences and technology ; Ferric Compounds - analysis ; Ferric Compounds - chemistry ; Geochemistry ; Iron ; Iron Isotopes - analysis ; Iron Isotopes - chemistry ; Isotope geochemistry ; Isotope geochemistry. Geochronology ; Isotopes ; Kinetics ; Mineralogy ; Oxidation-Reduction ; Silicates ; Silicon Dioxide - chemistry ; Solution chemistry ; Water geochemistry</subject><ispartof>Environmental science &amp; technology, 2011-03, Vol.45 (5), p.1847-1852</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-eb164063d907fba45dface311e867f8ff6f80452202f845a7b3750861faac8cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es103171x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es103171x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23890813$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21294566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Beard, Brian L</creatorcontrib><creatorcontrib>Roden, Eric E</creatorcontrib><creatorcontrib>Johnson, Clark M</creatorcontrib><title>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.</description><subject>Adsorption</subject><subject>Aqueous chemistry</subject><subject>Chemical Fractionation</subject><subject>Chemical precipitation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental Processes</subject><subject>Environmental science</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - analysis</subject><subject>Ferric Compounds - chemistry</subject><subject>Geochemistry</subject><subject>Iron</subject><subject>Iron Isotopes - analysis</subject><subject>Iron Isotopes - chemistry</subject><subject>Isotope geochemistry</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Mineralogy</subject><subject>Oxidation-Reduction</subject><subject>Silicates</subject><subject>Silicon Dioxide - chemistry</subject><subject>Solution chemistry</subject><subject>Water geochemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LxDAQBuAgiq4fB_-ABEHUQ3WmadL0uIqrBUFEBW9lmiZQ6bZr0kX993bZ1QW9ZCA8zLy8jB0iXCDEeGkDgsAUPzfYCGUMkdQSN9kIAEWUCfW6w3ZDeAOAWIDeZjsxxlkilRqxx6eeysby3Hctz0PXdzPLJ55MX3ctLR5-ZfsPa1s-fp_bbh74xJ7l-TmntuJ3X5VffnlfG_7wWVd2n205aoI9WM099jK5eb6-i-4fbvPr8X1EiUj7yJaoElCiyiB1JSWycmSsQLRapU47p5yGRMYxxE4nktJSpBK0QkdktKnEHjtd7p35bkgW-mJaB2ObhtpFzEJLkWVSJGqQx3_kWzf37RBuQBolqDQb0PkSGd-F4K0rZr6ekv8qEIpFy8Vvy4M9Wi2cl1Nb_cqfWgdwsgIUDDXOU2vqsHZCZ6BRrB2ZsA71_-A3b9aOjw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Wu, Lingling</creator><creator>Beard, Brian L</creator><creator>Roden, Eric E</creator><creator>Johnson, Clark M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</title><author>Wu, Lingling ; Beard, Brian L ; Roden, Eric E ; Johnson, Clark M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-eb164063d907fba45dface311e867f8ff6f80452202f845a7b3750861faac8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Aqueous chemistry</topic><topic>Chemical Fractionation</topic><topic>Chemical precipitation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental Processes</topic><topic>Environmental science</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - analysis</topic><topic>Ferric Compounds - chemistry</topic><topic>Geochemistry</topic><topic>Iron</topic><topic>Iron Isotopes - analysis</topic><topic>Iron Isotopes - chemistry</topic><topic>Isotope geochemistry</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Mineralogy</topic><topic>Oxidation-Reduction</topic><topic>Silicates</topic><topic>Silicon Dioxide - chemistry</topic><topic>Solution chemistry</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Beard, Brian L</creatorcontrib><creatorcontrib>Roden, Eric E</creatorcontrib><creatorcontrib>Johnson, Clark M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lingling</au><au>Beard, Brian L</au><au>Roden, Eric E</au><au>Johnson, Clark M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>45</volume><issue>5</issue><spage>1847</spage><epage>1852</epage><pages>1847-1852</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si−HFO coprecipitate, to determine an equilibrium Fe(II)−HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si−HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factors of −3.17 ± 0.08 (2σ)‰ and −2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si−HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)−HFO 56Fe/54Fe fractionation factor in the absence of silica may be ∼−3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21294566</pmid><doi>10.1021/es103171x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2011-03, Vol.45 (5), p.1847-1852
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_853995346
source MEDLINE; ACS Journals: American Chemical Society Web Editions
subjects Adsorption
Aqueous chemistry
Chemical Fractionation
Chemical precipitation
Earth sciences
Earth, ocean, space
Environmental Processes
Environmental science
Equilibrium
Exact sciences and technology
Ferric Compounds - analysis
Ferric Compounds - chemistry
Geochemistry
Iron
Iron Isotopes - analysis
Iron Isotopes - chemistry
Isotope geochemistry
Isotope geochemistry. Geochronology
Isotopes
Kinetics
Mineralogy
Oxidation-Reduction
Silicates
Silicon Dioxide - chemistry
Solution chemistry
Water geochemistry
title Stable Iron Isotope Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Iron%20Isotope%20Fractionation%20Between%20Aqueous%20Fe(II)%20and%20Hydrous%20Ferric%20Oxide&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wu,%20Lingling&rft.date=2011-03-01&rft.volume=45&rft.issue=5&rft.spage=1847&rft.epage=1852&rft.pages=1847-1852&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es103171x&rft_dat=%3Cproquest_cross%3E2299588031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858150679&rft_id=info:pmid/21294566&rfr_iscdi=true