Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties

This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2010-03, Vol.34 (3), p.744-762
Hauptverfasser: Krasnochtanova, Irina, Rauh, Andreas, Kletting, Marco, Aschemann, Harald, Hofer, Eberhard P., Schoop, Karl-Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 3
container_start_page 744
container_title Applied mathematical modelling
container_volume 34
creator Krasnochtanova, Irina
Rauh, Andreas
Kletting, Marco
Aschemann, Harald
Hofer, Eberhard P.
Schoop, Karl-Michael
description This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which are too conservative to be practically useful, we present algorithmic extensions of classical approaches which are applicable to the simulation of non-cooperative systems with time-varying uncertain parameters. Overestimation arising in the interval evaluation of dynamical system models due to the wrapping effect is reduced by an exact pseudo-linear transformation of nonlinear state equations and by new heuristics for the subdivision of interval enclosures which especially prefer splitting of unstable intervals. To highlight the typical procedure for parameterization of interval-based simulation routines and to demonstrate their efficiency, a nonlinear model of biological wastewater treatment processes is discussed. For this application, we consider the maximum specific growth rate of substrate consuming bacteria as a time-varying uncertain parameter. Only worst-case bounds are assumed to be available for the range of this parameter while no information is provided about its actual variation rate.
doi_str_mv 10.1016/j.apm.2009.06.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853487839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X09001784</els_id><sourcerecordid>853487839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-877e6d2fef1ae33aa50ff742ab01ea04a946f847f9123584d7da5bc4c49809cb3</originalsourceid><addsrcrecordid>eNp9kD1rHDEQhreIIY6TH5BOTXB1m9FK-yFcGeMvMLhxIJ2Y045yOnZXF43Oh7v89Og4kzIgEILnfWf0VNVXCbUE2X3f1rib6wbA1NDVIM2H6hwU9CsD-ufH6hPzFgDa8jqv_jwumdIrTmKmvIkjCyxHcJj3E-YQF5FjnISPSeQNifFtwTk4FtGLdYhT_BVcyR6QMx2wNImcCPNMSxa7FB0xE4tDyBuxw4RlRkH2i6OUMSw5EH-uzjxOTF_e74vqx93ty83D6un5_vHm-mnlVGvyauh76sbGk5dISiG24H2vG1yDJASNRnd-0L03slHtoMd-xHbttNNmAOPW6qK6PPWWtX7vibOdAzuaJlwo7tkOrdJDPyhTSHkiXYrMibzdpTBjerMS7FGw3doi2B4FW-hsEVwy397bkYsQn3Bxgf8Fm0b3SsORuzpxVL76GihZdoGKjzEkctmOMfxnyl-5bZaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853487839</pqid></control><display><type>article</type><title>Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Krasnochtanova, Irina ; Rauh, Andreas ; Kletting, Marco ; Aschemann, Harald ; Hofer, Eberhard P. ; Schoop, Karl-Michael</creator><creatorcontrib>Krasnochtanova, Irina ; Rauh, Andreas ; Kletting, Marco ; Aschemann, Harald ; Hofer, Eberhard P. ; Schoop, Karl-Michael</creatorcontrib><description>This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which are too conservative to be practically useful, we present algorithmic extensions of classical approaches which are applicable to the simulation of non-cooperative systems with time-varying uncertain parameters. Overestimation arising in the interval evaluation of dynamical system models due to the wrapping effect is reduced by an exact pseudo-linear transformation of nonlinear state equations and by new heuristics for the subdivision of interval enclosures which especially prefer splitting of unstable intervals. To highlight the typical procedure for parameterization of interval-based simulation routines and to demonstrate their efficiency, a nonlinear model of biological wastewater treatment processes is discussed. For this application, we consider the maximum specific growth rate of substrate consuming bacteria as a time-varying uncertain parameter. Only worst-case bounds are assumed to be available for the range of this parameter while no information is provided about its actual variation rate.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2009.06.019</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Algorithms ; Bacteria ; Biological wastewater treatment ; Computer simulation ; Dynamical systems ; Dynamics ; Enclosures ; Interval methods ; Intervals ; Mathematical models ; Parameter uncertainties ; Reduction of overestimation ; Stability analysis ; Verified simulation</subject><ispartof>Applied mathematical modelling, 2010-03, Vol.34 (3), p.744-762</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-877e6d2fef1ae33aa50ff742ab01ea04a946f847f9123584d7da5bc4c49809cb3</citedby><cites>FETCH-LOGICAL-c359t-877e6d2fef1ae33aa50ff742ab01ea04a946f847f9123584d7da5bc4c49809cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X09001784$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22473409$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krasnochtanova, Irina</creatorcontrib><creatorcontrib>Rauh, Andreas</creatorcontrib><creatorcontrib>Kletting, Marco</creatorcontrib><creatorcontrib>Aschemann, Harald</creatorcontrib><creatorcontrib>Hofer, Eberhard P.</creatorcontrib><creatorcontrib>Schoop, Karl-Michael</creatorcontrib><title>Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties</title><title>Applied mathematical modelling</title><description>This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which are too conservative to be practically useful, we present algorithmic extensions of classical approaches which are applicable to the simulation of non-cooperative systems with time-varying uncertain parameters. Overestimation arising in the interval evaluation of dynamical system models due to the wrapping effect is reduced by an exact pseudo-linear transformation of nonlinear state equations and by new heuristics for the subdivision of interval enclosures which especially prefer splitting of unstable intervals. To highlight the typical procedure for parameterization of interval-based simulation routines and to demonstrate their efficiency, a nonlinear model of biological wastewater treatment processes is discussed. For this application, we consider the maximum specific growth rate of substrate consuming bacteria as a time-varying uncertain parameter. Only worst-case bounds are assumed to be available for the range of this parameter while no information is provided about its actual variation rate.</description><subject>Algorithms</subject><subject>Bacteria</subject><subject>Biological wastewater treatment</subject><subject>Computer simulation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Enclosures</subject><subject>Interval methods</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Parameter uncertainties</subject><subject>Reduction of overestimation</subject><subject>Stability analysis</subject><subject>Verified simulation</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1rHDEQhreIIY6TH5BOTXB1m9FK-yFcGeMvMLhxIJ2Y045yOnZXF43Oh7v89Og4kzIgEILnfWf0VNVXCbUE2X3f1rib6wbA1NDVIM2H6hwU9CsD-ufH6hPzFgDa8jqv_jwumdIrTmKmvIkjCyxHcJj3E-YQF5FjnISPSeQNifFtwTk4FtGLdYhT_BVcyR6QMx2wNImcCPNMSxa7FB0xE4tDyBuxw4RlRkH2i6OUMSw5EH-uzjxOTF_e74vqx93ty83D6un5_vHm-mnlVGvyauh76sbGk5dISiG24H2vG1yDJASNRnd-0L03slHtoMd-xHbttNNmAOPW6qK6PPWWtX7vibOdAzuaJlwo7tkOrdJDPyhTSHkiXYrMibzdpTBjerMS7FGw3doi2B4FW-hsEVwy397bkYsQn3Bxgf8Fm0b3SsORuzpxVL76GihZdoGKjzEkctmOMfxnyl-5bZaY</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Krasnochtanova, Irina</creator><creator>Rauh, Andreas</creator><creator>Kletting, Marco</creator><creator>Aschemann, Harald</creator><creator>Hofer, Eberhard P.</creator><creator>Schoop, Karl-Michael</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties</title><author>Krasnochtanova, Irina ; Rauh, Andreas ; Kletting, Marco ; Aschemann, Harald ; Hofer, Eberhard P. ; Schoop, Karl-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-877e6d2fef1ae33aa50ff742ab01ea04a946f847f9123584d7da5bc4c49809cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bacteria</topic><topic>Biological wastewater treatment</topic><topic>Computer simulation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Enclosures</topic><topic>Interval methods</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Parameter uncertainties</topic><topic>Reduction of overestimation</topic><topic>Stability analysis</topic><topic>Verified simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasnochtanova, Irina</creatorcontrib><creatorcontrib>Rauh, Andreas</creatorcontrib><creatorcontrib>Kletting, Marco</creatorcontrib><creatorcontrib>Aschemann, Harald</creatorcontrib><creatorcontrib>Hofer, Eberhard P.</creatorcontrib><creatorcontrib>Schoop, Karl-Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasnochtanova, Irina</au><au>Rauh, Andreas</au><au>Kletting, Marco</au><au>Aschemann, Harald</au><au>Hofer, Eberhard P.</au><au>Schoop, Karl-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties</atitle><jtitle>Applied mathematical modelling</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>34</volume><issue>3</issue><spage>744</spage><epage>762</epage><pages>744-762</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which are too conservative to be practically useful, we present algorithmic extensions of classical approaches which are applicable to the simulation of non-cooperative systems with time-varying uncertain parameters. Overestimation arising in the interval evaluation of dynamical system models due to the wrapping effect is reduced by an exact pseudo-linear transformation of nonlinear state equations and by new heuristics for the subdivision of interval enclosures which especially prefer splitting of unstable intervals. To highlight the typical procedure for parameterization of interval-based simulation routines and to demonstrate their efficiency, a nonlinear model of biological wastewater treatment processes is discussed. For this application, we consider the maximum specific growth rate of substrate consuming bacteria as a time-varying uncertain parameter. Only worst-case bounds are assumed to be available for the range of this parameter while no information is provided about its actual variation rate.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2009.06.019</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2010-03, Vol.34 (3), p.744-762
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_853487839
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Bacteria
Biological wastewater treatment
Computer simulation
Dynamical systems
Dynamics
Enclosures
Interval methods
Intervals
Mathematical models
Parameter uncertainties
Reduction of overestimation
Stability analysis
Verified simulation
title Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20methods%20as%20a%20simulation%20tool%20for%20the%20dynamics%20of%20biological%20wastewater%20treatment%20processes%20with%20parameter%20uncertainties&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Krasnochtanova,%20Irina&rft.date=2010-03-01&rft.volume=34&rft.issue=3&rft.spage=744&rft.epage=762&rft.pages=744-762&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2009.06.019&rft_dat=%3Cproquest_cross%3E853487839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853487839&rft_id=info:pmid/&rft_els_id=S0307904X09001784&rfr_iscdi=true