Computational intelligence methods for the efficient reliability analysis of complex flood defence structures

With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex geote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural safety 2011, Vol.33 (1), p.64-73
Hauptverfasser: Kingston, Greer B., Rajabalinejad, Mohammadreza, Gouldby, Ben P., Van Gelder, Pieter H.A.J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 64
container_title Structural safety
container_volume 33
creator Kingston, Greer B.
Rajabalinejad, Mohammadreza
Gouldby, Ben P.
Van Gelder, Pieter H.A.J.M.
description With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex geotechnical failure mechanisms, it is often necessary to employ computationally expensive finite element methods to analyse defence and soil behaviours; however, methods available for structural reliability analysis are generally not suitable for direct application to such models where the limit state function is only defined implicitly. In this study, an artificial neural network is used as a response surface function to efficiently emulate the complex finite element model within a Monte Carlo simulation. To ensure the successful and robust implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to focus sampling of the implicit limit state function towards the limit state region in which the accuracy of the estimated response is of the greatest importance to the estimated structural reliability. The accuracy and gains in computational efficiency obtainable using the proposed method are demonstrated when applied to the 17th Street Canal flood wall which catastrophically failed when Hurricane Katrina hit New Orleans in 2005.
doi_str_mv 10.1016/j.strusafe.2010.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853486460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167473010000767</els_id><sourcerecordid>1671228374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d322796a5efd7a391a8fc16f6a94d62f859884060ae749896561128e89bd4a63</originalsourceid><addsrcrecordid>eNqFkU9vVCEUxYnRxLH1KzRsjG7eyL_Hg51morZJEzfdEwqXlgnvMQLPON--jFNd6uom5HfOvZyD0BUlW0qo_Ljf1lbWagNsGemPRG0JYS_QhqpJD5yP40u06eA0iImT1-hNrXtCyKiY2qB5l-fD2myLebEJx6VBSvEBFgd4hvaYfcUhF9weAUMI0UVYGi6Qor2PKbYjtl13rLHiHLDrZgl-4ZBy9thD-O1zOs-1tUC9RK-CTRXePs8LdPf1y93uerj9_u1m9_l2cIJMbfCcsUlLO0Lwk-WaWhUclUFaLbxkQY1aKUEksTAJrbQcJaVMgdL3XljJL9D7s-2h5B8r1GbmWF3_mF0gr9WokQslhSSd_PBPsqdGGVN8Eh2VZ9SVXGuBYA4lzrYcDSXmVITZmz9FmFMRhijTi-jCd887bHU2hWIXF-tfNeOSacVp5z6dOejJ_IxQTD2l7cDHAq4Zn-P_Vj0Bde-j7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671228374</pqid></control><display><type>article</type><title>Computational intelligence methods for the efficient reliability analysis of complex flood defence structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kingston, Greer B. ; Rajabalinejad, Mohammadreza ; Gouldby, Ben P. ; Van Gelder, Pieter H.A.J.M.</creator><creatorcontrib>Kingston, Greer B. ; Rajabalinejad, Mohammadreza ; Gouldby, Ben P. ; Van Gelder, Pieter H.A.J.M.</creatorcontrib><description>With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex geotechnical failure mechanisms, it is often necessary to employ computationally expensive finite element methods to analyse defence and soil behaviours; however, methods available for structural reliability analysis are generally not suitable for direct application to such models where the limit state function is only defined implicitly. In this study, an artificial neural network is used as a response surface function to efficiently emulate the complex finite element model within a Monte Carlo simulation. To ensure the successful and robust implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to focus sampling of the implicit limit state function towards the limit state region in which the accuracy of the estimated response is of the greatest importance to the estimated structural reliability. The accuracy and gains in computational efficiency obtainable using the proposed method are demonstrated when applied to the 17th Street Canal flood wall which catastrophically failed when Hurricane Katrina hit New Orleans in 2005.</description><identifier>ISSN: 0167-4730</identifier><identifier>EISSN: 1879-3355</identifier><identifier>DOI: 10.1016/j.strusafe.2010.08.002</identifier><identifier>CODEN: STSADI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Accuracy ; Adaptive sampling ; Applied sciences ; Artificial neural networks ; Buildings. Public works ; Computation methods. Tables. Charts ; Computer simulation ; Defence ; Exact sciences and technology ; Flood defence ; Floods ; Genetic algorithms ; Hydraulic constructions ; Limit states ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Response surface function ; River flow control. Flood control ; Stresses. Safety ; Structural analysis. Stresses ; Structural reliability</subject><ispartof>Structural safety, 2011, Vol.33 (1), p.64-73</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d322796a5efd7a391a8fc16f6a94d62f859884060ae749896561128e89bd4a63</citedby><cites>FETCH-LOGICAL-c407t-d322796a5efd7a391a8fc16f6a94d62f859884060ae749896561128e89bd4a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.strusafe.2010.08.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23629831$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kingston, Greer B.</creatorcontrib><creatorcontrib>Rajabalinejad, Mohammadreza</creatorcontrib><creatorcontrib>Gouldby, Ben P.</creatorcontrib><creatorcontrib>Van Gelder, Pieter H.A.J.M.</creatorcontrib><title>Computational intelligence methods for the efficient reliability analysis of complex flood defence structures</title><title>Structural safety</title><description>With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex geotechnical failure mechanisms, it is often necessary to employ computationally expensive finite element methods to analyse defence and soil behaviours; however, methods available for structural reliability analysis are generally not suitable for direct application to such models where the limit state function is only defined implicitly. In this study, an artificial neural network is used as a response surface function to efficiently emulate the complex finite element model within a Monte Carlo simulation. To ensure the successful and robust implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to focus sampling of the implicit limit state function towards the limit state region in which the accuracy of the estimated response is of the greatest importance to the estimated structural reliability. The accuracy and gains in computational efficiency obtainable using the proposed method are demonstrated when applied to the 17th Street Canal flood wall which catastrophically failed when Hurricane Katrina hit New Orleans in 2005.</description><subject>Accuracy</subject><subject>Adaptive sampling</subject><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Computer simulation</subject><subject>Defence</subject><subject>Exact sciences and technology</subject><subject>Flood defence</subject><subject>Floods</subject><subject>Genetic algorithms</subject><subject>Hydraulic constructions</subject><subject>Limit states</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Response surface function</subject><subject>River flow control. Flood control</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Structural reliability</subject><issn>0167-4730</issn><issn>1879-3355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vVCEUxYnRxLH1KzRsjG7eyL_Hg51morZJEzfdEwqXlgnvMQLPON--jFNd6uom5HfOvZyD0BUlW0qo_Ljf1lbWagNsGemPRG0JYS_QhqpJD5yP40u06eA0iImT1-hNrXtCyKiY2qB5l-fD2myLebEJx6VBSvEBFgd4hvaYfcUhF9weAUMI0UVYGi6Qor2PKbYjtl13rLHiHLDrZgl-4ZBy9thD-O1zOs-1tUC9RK-CTRXePs8LdPf1y93uerj9_u1m9_l2cIJMbfCcsUlLO0Lwk-WaWhUclUFaLbxkQY1aKUEksTAJrbQcJaVMgdL3XljJL9D7s-2h5B8r1GbmWF3_mF0gr9WokQslhSSd_PBPsqdGGVN8Eh2VZ9SVXGuBYA4lzrYcDSXmVITZmz9FmFMRhijTi-jCd887bHU2hWIXF-tfNeOSacVp5z6dOejJ_IxQTD2l7cDHAq4Zn-P_Vj0Bde-j7A</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kingston, Greer B.</creator><creator>Rajabalinejad, Mohammadreza</creator><creator>Gouldby, Ben P.</creator><creator>Van Gelder, Pieter H.A.J.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>2011</creationdate><title>Computational intelligence methods for the efficient reliability analysis of complex flood defence structures</title><author>Kingston, Greer B. ; Rajabalinejad, Mohammadreza ; Gouldby, Ben P. ; Van Gelder, Pieter H.A.J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d322796a5efd7a391a8fc16f6a94d62f859884060ae749896561128e89bd4a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Adaptive sampling</topic><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Computer simulation</topic><topic>Defence</topic><topic>Exact sciences and technology</topic><topic>Flood defence</topic><topic>Floods</topic><topic>Genetic algorithms</topic><topic>Hydraulic constructions</topic><topic>Limit states</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Response surface function</topic><topic>River flow control. Flood control</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Structural reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingston, Greer B.</creatorcontrib><creatorcontrib>Rajabalinejad, Mohammadreza</creatorcontrib><creatorcontrib>Gouldby, Ben P.</creatorcontrib><creatorcontrib>Van Gelder, Pieter H.A.J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Structural safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingston, Greer B.</au><au>Rajabalinejad, Mohammadreza</au><au>Gouldby, Ben P.</au><au>Van Gelder, Pieter H.A.J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational intelligence methods for the efficient reliability analysis of complex flood defence structures</atitle><jtitle>Structural safety</jtitle><date>2011</date><risdate>2011</risdate><volume>33</volume><issue>1</issue><spage>64</spage><epage>73</epage><pages>64-73</pages><issn>0167-4730</issn><eissn>1879-3355</eissn><coden>STSADI</coden><abstract>With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex geotechnical failure mechanisms, it is often necessary to employ computationally expensive finite element methods to analyse defence and soil behaviours; however, methods available for structural reliability analysis are generally not suitable for direct application to such models where the limit state function is only defined implicitly. In this study, an artificial neural network is used as a response surface function to efficiently emulate the complex finite element model within a Monte Carlo simulation. To ensure the successful and robust implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to focus sampling of the implicit limit state function towards the limit state region in which the accuracy of the estimated response is of the greatest importance to the estimated structural reliability. The accuracy and gains in computational efficiency obtainable using the proposed method are demonstrated when applied to the 17th Street Canal flood wall which catastrophically failed when Hurricane Katrina hit New Orleans in 2005.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.strusafe.2010.08.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-4730
ispartof Structural safety, 2011, Vol.33 (1), p.64-73
issn 0167-4730
1879-3355
language eng
recordid cdi_proquest_miscellaneous_853486460
source Elsevier ScienceDirect Journals Complete
subjects Accuracy
Adaptive sampling
Applied sciences
Artificial neural networks
Buildings. Public works
Computation methods. Tables. Charts
Computer simulation
Defence
Exact sciences and technology
Flood defence
Floods
Genetic algorithms
Hydraulic constructions
Limit states
Mathematical analysis
Mathematical models
Monte Carlo methods
Response surface function
River flow control. Flood control
Stresses. Safety
Structural analysis. Stresses
Structural reliability
title Computational intelligence methods for the efficient reliability analysis of complex flood defence structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20intelligence%20methods%20for%20the%20efficient%20reliability%20analysis%20of%20complex%20flood%20defence%20structures&rft.jtitle=Structural%20safety&rft.au=Kingston,%20Greer%20B.&rft.date=2011&rft.volume=33&rft.issue=1&rft.spage=64&rft.epage=73&rft.pages=64-73&rft.issn=0167-4730&rft.eissn=1879-3355&rft.coden=STSADI&rft_id=info:doi/10.1016/j.strusafe.2010.08.002&rft_dat=%3Cproquest_cross%3E1671228374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671228374&rft_id=info:pmid/&rft_els_id=S0167473010000767&rfr_iscdi=true