Effects of Corridors on Genetics of a Butterfly in a Landscape Experiment

To investigate the possible role of landscape connectivity on the genetic structure of isolated populations, we examined the effects of habitat corridors on the population genetics of a vagile butterfly species, Junonia coenia, within a large-scale, experimental system. Using allozyme electrophoresi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Southeastern naturalist (Steuben, Me.) Me.), 2009-12, Vol.8 (4), p.709-722
Hauptverfasser: Wells, Carrie N., Williams, Ray S., Walker, Gary L., Haddad, Nick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the possible role of landscape connectivity on the genetic structure of isolated populations, we examined the effects of habitat corridors on the population genetics of a vagile butterfly species, Junonia coenia, within a large-scale, experimental system. Using allozyme electrophoresis, a total of nine loci were identified and scored, six of which exhibited polymorphism. Our data demonstrated consistently higher levels of expected (He) and observed (Ho) heterozygosity in butterflies sampled from patches connected by corridors compared to unconnected patches. A t-test comparing He and H0 in connected versus unconnected patches found a marginally significant difference in one locus, the glycolytic enzyme phosphoglucose isomerase (PGI). Connected patches exhibited overall lower FST values compared to unconnected patches, indicating potentially increased levels of gene flow due to corridors. Our results support previous investigations on dispersal and population size for J. coenia, and show that higher dispersal through corridors promotes genetic variability at a locus (PGI) implicated in dispersal and fitness in butterflies.
ISSN:1528-7092
1938-5412
DOI:10.1656/058.008.0412