Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations

We report that stress axis—regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-12, Vol.107 (49), p.21152-21157
Hauptverfasser: Bell, Thomas J., Miyashiro, Kevin Y., Sul, Jai-Yoon, Buckley, Peter T., Lee, Miler T., McCullough, Ron, Jochems, Jeanine, Kim, Junhyong, Cantor, Charles R., Parsons, Thomas D., Eberwine, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21157
container_issue 49
container_start_page 21152
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Bell, Thomas J.
Miyashiro, Kevin Y.
Sul, Jai-Yoon
Buckley, Peter T.
Lee, Miler T.
McCullough, Ron
Jochems, Jeanine
Kim, Junhyong
Cantor, Charles R.
Parsons, Thomas D.
Eberwine, James H.
description We report that stress axis—regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples found intron 17a (i17a), the intron immediately preceding STREX, in the BKCa mRNA. Further molecular analyses of i17a revealed that the majority of i17a-containing BKCa channel mRNAs associate with STREX. i17a siRNA treatment followed by STREX protein immunocytochemistry demonstrated both reduced levels and altered subcellular distribution of STREX-containing BKCa channel protein. Selective reduction of i17a-BKCa or STREX-BKCa mRNAs induced similar changes in the burst firing properties of hippocampal neurons. Collectively, these data show that STREX splice variant regulation via cytoplasmic splicing and intron retention helps generate STREX-dependent BKCa current diversity in hippocampal neurons.
doi_str_mv 10.1073/pnas.1015264107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_853476058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25756847</jstor_id><sourcerecordid>25756847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-96d9ef5d4e8ecaa54224e8b01ec451cce9a7ebe08a66863c6b68ef0a90da88d3</originalsourceid><addsrcrecordid>eNqFks9rFDEUx4Modls9e1IGL57GJjP5eRGkaC0UvPQe3mTetlmymTHJLPS_N8uuXfXSUx4vn_eB9_gS8o7Rz4yq_nKOkGvFRCd5bbwgK0YNayU39CVZUdqpVvOOn5HznDeUUiM0fU3OuspqY_SKhJtY0hSbhAVj8bVag_PBFyiYmzwH77DZQfIQSzP6Habsy2PjY-MgOL9sW3DF7yo9NoO_b-apQM6137gHiBFD7cxLgL06vyGv1hAyvj2-F-Tu-7e7qx_t7c_rm6uvt60TRpbWyNHgWowcNToAwbuulgNl6LhgzqEBhQNSDVJq2Ts5SI1rCoaOoPXYX5AvB-28DFscXV0sQbBz8ltIj3YCb__9if7B3k8729cLdZxXwaejIE2_FszFbn12GAJEnJZstepYp3tqnidFz5WkQj9PMqlMz4yq5Mf_yM20pFgPViHFZK81rdDlAXJpyjnh-mk9Ru0-GnYfDXuKRp348PdVnvg_WahAcwT2kyedstxUqooq8v6AbHKZ0kkhlJCaq_43DM7MoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817163880</pqid></control><display><type>article</type><title>Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bell, Thomas J. ; Miyashiro, Kevin Y. ; Sul, Jai-Yoon ; Buckley, Peter T. ; Lee, Miler T. ; McCullough, Ron ; Jochems, Jeanine ; Kim, Junhyong ; Cantor, Charles R. ; Parsons, Thomas D. ; Eberwine, James H.</creator><creatorcontrib>Bell, Thomas J. ; Miyashiro, Kevin Y. ; Sul, Jai-Yoon ; Buckley, Peter T. ; Lee, Miler T. ; McCullough, Ron ; Jochems, Jeanine ; Kim, Junhyong ; Cantor, Charles R. ; Parsons, Thomas D. ; Eberwine, James H.</creatorcontrib><description>We report that stress axis—regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples found intron 17a (i17a), the intron immediately preceding STREX, in the BKCa mRNA. Further molecular analyses of i17a revealed that the majority of i17a-containing BKCa channel mRNAs associate with STREX. i17a siRNA treatment followed by STREX protein immunocytochemistry demonstrated both reduced levels and altered subcellular distribution of STREX-containing BKCa channel protein. Selective reduction of i17a-BKCa or STREX-BKCa mRNAs induced similar changes in the burst firing properties of hippocampal neurons. Collectively, these data show that STREX splice variant regulation via cytoplasmic splicing and intron retention helps generate STREX-dependent BKCa current diversity in hippocampal neurons.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1015264107</identifier><identifier>PMID: 21078998</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action potentials ; Alternative splicing ; Alternative Splicing - genetics ; Animals ; Biological Sciences ; Calcium ; Cells ; Data processing ; Dendrites ; Deoxyribonucleic acid ; DNA ; Exons ; Gene expression ; Hippocampus ; Hippocampus - cytology ; Immunocytochemistry ; Introns ; Introns - genetics ; Large-Conductance Calcium-Activated Potassium Channels - genetics ; Messenger RNA ; Mitochondria ; mRNA ; Neurons ; Polymerase chain reaction ; Potassium ; Potassium channels ; Potassium channels (calcium-gated) ; Proteins ; Rats ; Ribonucleic acid ; RNA ; RNA, Messenger ; siRNA ; Small interfering RNA ; Splicing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-12, Vol.107 (49), p.21152-21157</ispartof><rights>Copyright National Academy of Sciences Dec 7, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-96d9ef5d4e8ecaa54224e8b01ec451cce9a7ebe08a66863c6b68ef0a90da88d3</citedby><cites>FETCH-LOGICAL-c596t-96d9ef5d4e8ecaa54224e8b01ec451cce9a7ebe08a66863c6b68ef0a90da88d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25756847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25756847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21078998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bell, Thomas J.</creatorcontrib><creatorcontrib>Miyashiro, Kevin Y.</creatorcontrib><creatorcontrib>Sul, Jai-Yoon</creatorcontrib><creatorcontrib>Buckley, Peter T.</creatorcontrib><creatorcontrib>Lee, Miler T.</creatorcontrib><creatorcontrib>McCullough, Ron</creatorcontrib><creatorcontrib>Jochems, Jeanine</creatorcontrib><creatorcontrib>Kim, Junhyong</creatorcontrib><creatorcontrib>Cantor, Charles R.</creatorcontrib><creatorcontrib>Parsons, Thomas D.</creatorcontrib><creatorcontrib>Eberwine, James H.</creatorcontrib><title>Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report that stress axis—regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples found intron 17a (i17a), the intron immediately preceding STREX, in the BKCa mRNA. Further molecular analyses of i17a revealed that the majority of i17a-containing BKCa channel mRNAs associate with STREX. i17a siRNA treatment followed by STREX protein immunocytochemistry demonstrated both reduced levels and altered subcellular distribution of STREX-containing BKCa channel protein. Selective reduction of i17a-BKCa or STREX-BKCa mRNAs induced similar changes in the burst firing properties of hippocampal neurons. Collectively, these data show that STREX splice variant regulation via cytoplasmic splicing and intron retention helps generate STREX-dependent BKCa current diversity in hippocampal neurons.</description><subject>Action potentials</subject><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Cells</subject><subject>Data processing</subject><subject>Dendrites</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Exons</subject><subject>Gene expression</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Immunocytochemistry</subject><subject>Introns</subject><subject>Introns - genetics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - genetics</subject><subject>Messenger RNA</subject><subject>Mitochondria</subject><subject>mRNA</subject><subject>Neurons</subject><subject>Polymerase chain reaction</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Potassium channels (calcium-gated)</subject><subject>Proteins</subject><subject>Rats</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger</subject><subject>siRNA</subject><subject>Small interfering RNA</subject><subject>Splicing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9rFDEUx4Modls9e1IGL57GJjP5eRGkaC0UvPQe3mTetlmymTHJLPS_N8uuXfXSUx4vn_eB9_gS8o7Rz4yq_nKOkGvFRCd5bbwgK0YNayU39CVZUdqpVvOOn5HznDeUUiM0fU3OuspqY_SKhJtY0hSbhAVj8bVag_PBFyiYmzwH77DZQfIQSzP6Habsy2PjY-MgOL9sW3DF7yo9NoO_b-apQM6137gHiBFD7cxLgL06vyGv1hAyvj2-F-Tu-7e7qx_t7c_rm6uvt60TRpbWyNHgWowcNToAwbuulgNl6LhgzqEBhQNSDVJq2Ts5SI1rCoaOoPXYX5AvB-28DFscXV0sQbBz8ltIj3YCb__9if7B3k8729cLdZxXwaejIE2_FszFbn12GAJEnJZstepYp3tqnidFz5WkQj9PMqlMz4yq5Mf_yM20pFgPViHFZK81rdDlAXJpyjnh-mk9Ru0-GnYfDXuKRp348PdVnvg_WahAcwT2kyedstxUqooq8v6AbHKZ0kkhlJCaq_43DM7MoA</recordid><startdate>20101207</startdate><enddate>20101207</enddate><creator>Bell, Thomas J.</creator><creator>Miyashiro, Kevin Y.</creator><creator>Sul, Jai-Yoon</creator><creator>Buckley, Peter T.</creator><creator>Lee, Miler T.</creator><creator>McCullough, Ron</creator><creator>Jochems, Jeanine</creator><creator>Kim, Junhyong</creator><creator>Cantor, Charles R.</creator><creator>Parsons, Thomas D.</creator><creator>Eberwine, James H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101207</creationdate><title>Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations</title><author>Bell, Thomas J. ; Miyashiro, Kevin Y. ; Sul, Jai-Yoon ; Buckley, Peter T. ; Lee, Miler T. ; McCullough, Ron ; Jochems, Jeanine ; Kim, Junhyong ; Cantor, Charles R. ; Parsons, Thomas D. ; Eberwine, James H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-96d9ef5d4e8ecaa54224e8b01ec451cce9a7ebe08a66863c6b68ef0a90da88d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action potentials</topic><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Cells</topic><topic>Data processing</topic><topic>Dendrites</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Exons</topic><topic>Gene expression</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Immunocytochemistry</topic><topic>Introns</topic><topic>Introns - genetics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - genetics</topic><topic>Messenger RNA</topic><topic>Mitochondria</topic><topic>mRNA</topic><topic>Neurons</topic><topic>Polymerase chain reaction</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Potassium channels (calcium-gated)</topic><topic>Proteins</topic><topic>Rats</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger</topic><topic>siRNA</topic><topic>Small interfering RNA</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bell, Thomas J.</creatorcontrib><creatorcontrib>Miyashiro, Kevin Y.</creatorcontrib><creatorcontrib>Sul, Jai-Yoon</creatorcontrib><creatorcontrib>Buckley, Peter T.</creatorcontrib><creatorcontrib>Lee, Miler T.</creatorcontrib><creatorcontrib>McCullough, Ron</creatorcontrib><creatorcontrib>Jochems, Jeanine</creatorcontrib><creatorcontrib>Kim, Junhyong</creatorcontrib><creatorcontrib>Cantor, Charles R.</creatorcontrib><creatorcontrib>Parsons, Thomas D.</creatorcontrib><creatorcontrib>Eberwine, James H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bell, Thomas J.</au><au>Miyashiro, Kevin Y.</au><au>Sul, Jai-Yoon</au><au>Buckley, Peter T.</au><au>Lee, Miler T.</au><au>McCullough, Ron</au><au>Jochems, Jeanine</au><au>Kim, Junhyong</au><au>Cantor, Charles R.</au><au>Parsons, Thomas D.</au><au>Eberwine, James H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-12-07</date><risdate>2010</risdate><volume>107</volume><issue>49</issue><spage>21152</spage><epage>21157</epage><pages>21152-21157</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report that stress axis—regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples found intron 17a (i17a), the intron immediately preceding STREX, in the BKCa mRNA. Further molecular analyses of i17a revealed that the majority of i17a-containing BKCa channel mRNAs associate with STREX. i17a siRNA treatment followed by STREX protein immunocytochemistry demonstrated both reduced levels and altered subcellular distribution of STREX-containing BKCa channel protein. Selective reduction of i17a-BKCa or STREX-BKCa mRNAs induced similar changes in the burst firing properties of hippocampal neurons. Collectively, these data show that STREX splice variant regulation via cytoplasmic splicing and intron retention helps generate STREX-dependent BKCa current diversity in hippocampal neurons.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21078998</pmid><doi>10.1073/pnas.1015264107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-12, Vol.107 (49), p.21152-21157
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_853476058
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Action potentials
Alternative splicing
Alternative Splicing - genetics
Animals
Biological Sciences
Calcium
Cells
Data processing
Dendrites
Deoxyribonucleic acid
DNA
Exons
Gene expression
Hippocampus
Hippocampus - cytology
Immunocytochemistry
Introns
Introns - genetics
Large-Conductance Calcium-Activated Potassium Channels - genetics
Messenger RNA
Mitochondria
mRNA
Neurons
Polymerase chain reaction
Potassium
Potassium channels
Potassium channels (calcium-gated)
Proteins
Rats
Ribonucleic acid
RNA
RNA, Messenger
siRNA
Small interfering RNA
Splicing
title Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intron%20retention%20facilitates%20splice%20variant%20diversity%20in%20calcium-activated%20big%20potassium%20channel%20populations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bell,%20Thomas%20J.&rft.date=2010-12-07&rft.volume=107&rft.issue=49&rft.spage=21152&rft.epage=21157&rft.pages=21152-21157&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1015264107&rft_dat=%3Cjstor_proqu%3E25756847%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817163880&rft_id=info:pmid/21078998&rft_jstor_id=25756847&rfr_iscdi=true