Highly conserved tyrosine stabilizes the active state of rhodopsin

Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (46), p.19861-19866
Hauptverfasser: Goncalves, Joseph A., South, Kieron, Ahuja, Shivani, Zaitseva, Ekaterina, Opefi, Chikwado A., Eilers, Markus, Vogel, Reiner, Reeves, Philip J., Smith, Steven O., Henderson, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19866
container_issue 46
container_start_page 19861
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Goncalves, Joseph A.
South, Kieron
Ahuja, Shivani
Zaitseva, Ekaterina
Opefi, Chikwado A.
Eilers, Markus
Vogel, Reiner
Reeves, Philip J.
Smith, Steven O.
Henderson, Richard
description Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135 3.50 and Met257 6.40 forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134 3.49 -Arg135 3.50 -Glu247 6.30 ionic lock. We also show that Tyr223 5.58 and Tyr306 7.53 form molecular contacts with Met257 6.40 . Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223 5.58 and Ala132 3.47 in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223 5.58 to phenylalanine or mutation of Ala132 3.47 to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306 7.53 to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.
doi_str_mv 10.1073/pnas.1009405107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_853474044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748770</jstor_id><sourcerecordid>25748770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-dc173858231667633d42a4bc4c9f562f97e3223ccf0bfb0d6ddd8bb3e2f359d63</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EomngzAm04tLTtuNv-4IEFdBKlbjA2fLa3majzTrYTqTw63Ga0EBPnGY0fuad8bwIvcFwiUHSq_Vkc81AM-C18AzNMGjcCqbhOZoBENkqRtgZOs95CZXjCl6iM4KBYSHYDH26Ge4X465xccohbYNvyi7FPEyhycV2wzj8Crkpi9BYV4btQ7WEJvZNWkQf15V8hV70dszh9THO0Y8vn79f37R3377eXn-8ax3XorTeYUkVV4TWyVJQ6hmxrHPM6Z4L0msZKCHUuR66vgMvvPeq62ggPeXaCzpHHw666023Ct6FqSQ7mnUaVjbtTLSD-fdlGhbmPm4N0ZqyKj1HF0eBFH9uQi5mNWQXxtFOIW6yUZwyBVTL_yIlA8Yq-f4JuYybNNU7GAWSE6wlVOjqALl62pxC_7g0BrP30ex9NCcfa8e7v__6yP8xrgLNEdh3nuSkYcJgrQSuyNsDsswlppMEl0zJutVvr3qtzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807521970</pqid></control><display><type>article</type><title>Highly conserved tyrosine stabilizes the active state of rhodopsin</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Goncalves, Joseph A. ; South, Kieron ; Ahuja, Shivani ; Zaitseva, Ekaterina ; Opefi, Chikwado A. ; Eilers, Markus ; Vogel, Reiner ; Reeves, Philip J. ; Smith, Steven O. ; Henderson, Richard</creator><creatorcontrib>Goncalves, Joseph A. ; South, Kieron ; Ahuja, Shivani ; Zaitseva, Ekaterina ; Opefi, Chikwado A. ; Eilers, Markus ; Vogel, Reiner ; Reeves, Philip J. ; Smith, Steven O. ; Henderson, Richard</creatorcontrib><description>Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135 3.50 and Met257 6.40 forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134 3.49 -Arg135 3.50 -Glu247 6.30 ionic lock. We also show that Tyr223 5.58 and Tyr306 7.53 form molecular contacts with Met257 6.40 . Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223 5.58 and Ala132 3.47 in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223 5.58 to phenylalanine or mutation of Ala132 3.47 to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306 7.53 to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1009405107</identifier><identifier>PMID: 21041664</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alanine - genetics ; Amino Acid Substitution - genetics ; Amino acids ; Animals ; Biochemistry ; Biological Sciences ; Cattle ; Chemical equilibrium ; Conserved Sequence - genetics ; Crystal structure ; Crystallography, X-Ray ; Fluorescence ; HEK293 Cells ; Humans ; Hydrolysis ; Ion Channel Gating ; Line spectra ; Magnetic Resonance Spectroscopy ; Membranes ; Molecular biology ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; NMR ; Nuclear magnetic resonance ; Opsins ; Pigments ; Protein Conformation ; Protein Stability ; Protein Structure, Secondary ; Proteins ; Receptors ; Rhodopsin - chemistry ; Rhodopsin - metabolism ; Signal Transduction ; Spectroscopy ; Structure-Activity Relationship ; Tyrosine - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (46), p.19861-19866</ispartof><rights>Copyright National Academy of Sciences Nov 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-dc173858231667633d42a4bc4c9f562f97e3223ccf0bfb0d6ddd8bb3e2f359d63</citedby><cites>FETCH-LOGICAL-c596t-dc173858231667633d42a4bc4c9f562f97e3223ccf0bfb0d6ddd8bb3e2f359d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748770$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748770$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21041664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goncalves, Joseph A.</creatorcontrib><creatorcontrib>South, Kieron</creatorcontrib><creatorcontrib>Ahuja, Shivani</creatorcontrib><creatorcontrib>Zaitseva, Ekaterina</creatorcontrib><creatorcontrib>Opefi, Chikwado A.</creatorcontrib><creatorcontrib>Eilers, Markus</creatorcontrib><creatorcontrib>Vogel, Reiner</creatorcontrib><creatorcontrib>Reeves, Philip J.</creatorcontrib><creatorcontrib>Smith, Steven O.</creatorcontrib><creatorcontrib>Henderson, Richard</creatorcontrib><title>Highly conserved tyrosine stabilizes the active state of rhodopsin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135 3.50 and Met257 6.40 forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134 3.49 -Arg135 3.50 -Glu247 6.30 ionic lock. We also show that Tyr223 5.58 and Tyr306 7.53 form molecular contacts with Met257 6.40 . Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223 5.58 and Ala132 3.47 in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223 5.58 to phenylalanine or mutation of Ala132 3.47 to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306 7.53 to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.</description><subject>Alanine - genetics</subject><subject>Amino Acid Substitution - genetics</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cattle</subject><subject>Chemical equilibrium</subject><subject>Conserved Sequence - genetics</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Fluorescence</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Ion Channel Gating</subject><subject>Line spectra</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membranes</subject><subject>Molecular biology</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Opsins</subject><subject>Pigments</subject><subject>Protein Conformation</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - metabolism</subject><subject>Signal Transduction</subject><subject>Spectroscopy</subject><subject>Structure-Activity Relationship</subject><subject>Tyrosine - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEQhi0EomngzAm04tLTtuNv-4IEFdBKlbjA2fLa3majzTrYTqTw63Ga0EBPnGY0fuad8bwIvcFwiUHSq_Vkc81AM-C18AzNMGjcCqbhOZoBENkqRtgZOs95CZXjCl6iM4KBYSHYDH26Ge4X465xccohbYNvyi7FPEyhycV2wzj8Crkpi9BYV4btQ7WEJvZNWkQf15V8hV70dszh9THO0Y8vn79f37R3377eXn-8ax3XorTeYUkVV4TWyVJQ6hmxrHPM6Z4L0msZKCHUuR66vgMvvPeq62ggPeXaCzpHHw666023Ct6FqSQ7mnUaVjbtTLSD-fdlGhbmPm4N0ZqyKj1HF0eBFH9uQi5mNWQXxtFOIW6yUZwyBVTL_yIlA8Yq-f4JuYybNNU7GAWSE6wlVOjqALl62pxC_7g0BrP30ex9NCcfa8e7v__6yP8xrgLNEdh3nuSkYcJgrQSuyNsDsswlppMEl0zJutVvr3qtzw</recordid><startdate>20101116</startdate><enddate>20101116</enddate><creator>Goncalves, Joseph A.</creator><creator>South, Kieron</creator><creator>Ahuja, Shivani</creator><creator>Zaitseva, Ekaterina</creator><creator>Opefi, Chikwado A.</creator><creator>Eilers, Markus</creator><creator>Vogel, Reiner</creator><creator>Reeves, Philip J.</creator><creator>Smith, Steven O.</creator><creator>Henderson, Richard</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20101116</creationdate><title>Highly conserved tyrosine stabilizes the active state of rhodopsin</title><author>Goncalves, Joseph A. ; South, Kieron ; Ahuja, Shivani ; Zaitseva, Ekaterina ; Opefi, Chikwado A. ; Eilers, Markus ; Vogel, Reiner ; Reeves, Philip J. ; Smith, Steven O. ; Henderson, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-dc173858231667633d42a4bc4c9f562f97e3223ccf0bfb0d6ddd8bb3e2f359d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alanine - genetics</topic><topic>Amino Acid Substitution - genetics</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cattle</topic><topic>Chemical equilibrium</topic><topic>Conserved Sequence - genetics</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Fluorescence</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Ion Channel Gating</topic><topic>Line spectra</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membranes</topic><topic>Molecular biology</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Opsins</topic><topic>Pigments</topic><topic>Protein Conformation</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - metabolism</topic><topic>Signal Transduction</topic><topic>Spectroscopy</topic><topic>Structure-Activity Relationship</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, Joseph A.</creatorcontrib><creatorcontrib>South, Kieron</creatorcontrib><creatorcontrib>Ahuja, Shivani</creatorcontrib><creatorcontrib>Zaitseva, Ekaterina</creatorcontrib><creatorcontrib>Opefi, Chikwado A.</creatorcontrib><creatorcontrib>Eilers, Markus</creatorcontrib><creatorcontrib>Vogel, Reiner</creatorcontrib><creatorcontrib>Reeves, Philip J.</creatorcontrib><creatorcontrib>Smith, Steven O.</creatorcontrib><creatorcontrib>Henderson, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncalves, Joseph A.</au><au>South, Kieron</au><au>Ahuja, Shivani</au><au>Zaitseva, Ekaterina</au><au>Opefi, Chikwado A.</au><au>Eilers, Markus</au><au>Vogel, Reiner</au><au>Reeves, Philip J.</au><au>Smith, Steven O.</au><au>Henderson, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly conserved tyrosine stabilizes the active state of rhodopsin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-16</date><risdate>2010</risdate><volume>107</volume><issue>46</issue><spage>19861</spage><epage>19866</epage><pages>19861-19866</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135 3.50 and Met257 6.40 forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134 3.49 -Arg135 3.50 -Glu247 6.30 ionic lock. We also show that Tyr223 5.58 and Tyr306 7.53 form molecular contacts with Met257 6.40 . Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223 5.58 and Ala132 3.47 in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223 5.58 to phenylalanine or mutation of Ala132 3.47 to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306 7.53 to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21041664</pmid><doi>10.1073/pnas.1009405107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (46), p.19861-19866
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_853474044
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Alanine - genetics
Amino Acid Substitution - genetics
Amino acids
Animals
Biochemistry
Biological Sciences
Cattle
Chemical equilibrium
Conserved Sequence - genetics
Crystal structure
Crystallography, X-Ray
Fluorescence
HEK293 Cells
Humans
Hydrolysis
Ion Channel Gating
Line spectra
Magnetic Resonance Spectroscopy
Membranes
Molecular biology
Mutant Proteins - chemistry
Mutant Proteins - metabolism
Mutation
Mutation - genetics
NMR
Nuclear magnetic resonance
Opsins
Pigments
Protein Conformation
Protein Stability
Protein Structure, Secondary
Proteins
Receptors
Rhodopsin - chemistry
Rhodopsin - metabolism
Signal Transduction
Spectroscopy
Structure-Activity Relationship
Tyrosine - metabolism
title Highly conserved tyrosine stabilizes the active state of rhodopsin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20conserved%20tyrosine%20stabilizes%20the%20active%20state%20of%20rhodopsin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Goncalves,%20Joseph%20A.&rft.date=2010-11-16&rft.volume=107&rft.issue=46&rft.spage=19861&rft.epage=19866&rft.pages=19861-19866&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1009405107&rft_dat=%3Cjstor_proqu%3E25748770%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807521970&rft_id=info:pmid/21041664&rft_jstor_id=25748770&rfr_iscdi=true