Micellization and Phase Separation for Triblock Copolymer 17R4 in H2O and in D2O

The reverse Pluronic triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14−PEO24−PPO14, where the subscripts denote the number of monomers in each block. In water, 17R4 shows both a transition to aggregated micellar species at lower temperatures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2011-03, Vol.27 (5), p.1707-1712
Hauptverfasser: Huff, Alison, Patton, Kelly, Odhner, Hosanna, Jacobs, Donald T, Clover, Bryna C, Greer, Sandra C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1712
container_issue 5
container_start_page 1707
container_title Langmuir
container_volume 27
creator Huff, Alison
Patton, Kelly
Odhner, Hosanna
Jacobs, Donald T
Clover, Bryna C
Greer, Sandra C
description The reverse Pluronic triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14−PEO24−PPO14, where the subscripts denote the number of monomers in each block. In water, 17R4 shows both a transition to aggregated micellar species at lower temperatures and a separation into copolymer-rich and copolymer-poor liquid phases at higher temperatures. For 17R4 in H2O and in D2O, we have determined (1) the phase boundaries corresponding to the micellization line, (2) the cloud point curves marking the onset of phase separation at various compositions, and (3) the coexistence curves for the phase separation (the compositions of coexisting phases). In both H2O and in D2O, 17R4 exhibits coexistence curves with lower consolute temperatures and compositions that differ from the minima in the cloud point curves; we take this as an indication of the polydispersity of the micellar species. The coexistence curves for compositions near the critical composition are described well by an Ising model. For 17R4 in both H2O and D2O, the critical composition is 0.22 ± 0.01 in volume fraction. The critical temperatures differ: 44.8 °C in H2O and 43.6 °C in D2O. The cloud point curve for the 17R4/D2O is as much as 9 °C lower than in H2O.
doi_str_mv 10.1021/la104350g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_853473436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>853473436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a266t-6b1bb0802dad603fcaa1bc48094551e0605dc21057ef54909b472b20633a5c113</originalsourceid><addsrcrecordid>eNpFkTtPw0AQhE8IREKg4A8gN4jKsPe2SxQeQQpKBKG21uczOPjFXVyEX49DAql2tPp2pNkh5JzCNQVGb0qkILiE9wMypJJBKCOmD8kQtOChFooPyIn3SwCIuYiPyYBRJgRoNSTz58LYsiy-cVU0dYB1Fsw_0Nvg1bbotsu8ccHCFWnZmM9g3LRNua6sC6h-EUFRBxM2-73r5R2bnZKjHEtvz3ZzRN4e7hfjSTidPT6Nb6chMqVWoUppmkIELMNMAc8NIk2NiCAWUlILCmRmGAWpbS5FDHEqNEsZKM5RGkr5iFxtfVvXfHXWr5Kq8JsoWNum80kkudBccNWTFzuySyubJa0rKnTr5O8JPXC5A9AbLHOHtSn8nuNRrDTnew6NT5ZN5-o-YEIh2ZSQ_JfAfwB6SXLB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853473436</pqid></control><display><type>article</type><title>Micellization and Phase Separation for Triblock Copolymer 17R4 in H2O and in D2O</title><source>American Chemical Society Journals</source><creator>Huff, Alison ; Patton, Kelly ; Odhner, Hosanna ; Jacobs, Donald T ; Clover, Bryna C ; Greer, Sandra C</creator><creatorcontrib>Huff, Alison ; Patton, Kelly ; Odhner, Hosanna ; Jacobs, Donald T ; Clover, Bryna C ; Greer, Sandra C</creatorcontrib><description>The reverse Pluronic triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14−PEO24−PPO14, where the subscripts denote the number of monomers in each block. In water, 17R4 shows both a transition to aggregated micellar species at lower temperatures and a separation into copolymer-rich and copolymer-poor liquid phases at higher temperatures. For 17R4 in H2O and in D2O, we have determined (1) the phase boundaries corresponding to the micellization line, (2) the cloud point curves marking the onset of phase separation at various compositions, and (3) the coexistence curves for the phase separation (the compositions of coexisting phases). In both H2O and in D2O, 17R4 exhibits coexistence curves with lower consolute temperatures and compositions that differ from the minima in the cloud point curves; we take this as an indication of the polydispersity of the micellar species. The coexistence curves for compositions near the critical composition are described well by an Ising model. For 17R4 in both H2O and D2O, the critical composition is 0.22 ± 0.01 in volume fraction. The critical temperatures differ: 44.8 °C in H2O and 43.6 °C in D2O. The cloud point curve for the 17R4/D2O is as much as 9 °C lower than in H2O.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la104350g</identifier><identifier>PMID: 21244076</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Exact sciences and technology ; General and physical chemistry ; Micelles. Thin films</subject><ispartof>Langmuir, 2011-03, Vol.27 (5), p.1707-1712</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la104350g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la104350g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23896733$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21244076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huff, Alison</creatorcontrib><creatorcontrib>Patton, Kelly</creatorcontrib><creatorcontrib>Odhner, Hosanna</creatorcontrib><creatorcontrib>Jacobs, Donald T</creatorcontrib><creatorcontrib>Clover, Bryna C</creatorcontrib><creatorcontrib>Greer, Sandra C</creatorcontrib><title>Micellization and Phase Separation for Triblock Copolymer 17R4 in H2O and in D2O</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The reverse Pluronic triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14−PEO24−PPO14, where the subscripts denote the number of monomers in each block. In water, 17R4 shows both a transition to aggregated micellar species at lower temperatures and a separation into copolymer-rich and copolymer-poor liquid phases at higher temperatures. For 17R4 in H2O and in D2O, we have determined (1) the phase boundaries corresponding to the micellization line, (2) the cloud point curves marking the onset of phase separation at various compositions, and (3) the coexistence curves for the phase separation (the compositions of coexisting phases). In both H2O and in D2O, 17R4 exhibits coexistence curves with lower consolute temperatures and compositions that differ from the minima in the cloud point curves; we take this as an indication of the polydispersity of the micellar species. The coexistence curves for compositions near the critical composition are described well by an Ising model. For 17R4 in both H2O and D2O, the critical composition is 0.22 ± 0.01 in volume fraction. The critical temperatures differ: 44.8 °C in H2O and 43.6 °C in D2O. The cloud point curve for the 17R4/D2O is as much as 9 °C lower than in H2O.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Micelles. Thin films</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkTtPw0AQhE8IREKg4A8gN4jKsPe2SxQeQQpKBKG21uczOPjFXVyEX49DAql2tPp2pNkh5JzCNQVGb0qkILiE9wMypJJBKCOmD8kQtOChFooPyIn3SwCIuYiPyYBRJgRoNSTz58LYsiy-cVU0dYB1Fsw_0Nvg1bbotsu8ccHCFWnZmM9g3LRNua6sC6h-EUFRBxM2-73r5R2bnZKjHEtvz3ZzRN4e7hfjSTidPT6Nb6chMqVWoUppmkIELMNMAc8NIk2NiCAWUlILCmRmGAWpbS5FDHEqNEsZKM5RGkr5iFxtfVvXfHXWr5Kq8JsoWNum80kkudBccNWTFzuySyubJa0rKnTr5O8JPXC5A9AbLHOHtSn8nuNRrDTnew6NT5ZN5-o-YEIh2ZSQ_JfAfwB6SXLB</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Huff, Alison</creator><creator>Patton, Kelly</creator><creator>Odhner, Hosanna</creator><creator>Jacobs, Donald T</creator><creator>Clover, Bryna C</creator><creator>Greer, Sandra C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Micellization and Phase Separation for Triblock Copolymer 17R4 in H2O and in D2O</title><author>Huff, Alison ; Patton, Kelly ; Odhner, Hosanna ; Jacobs, Donald T ; Clover, Bryna C ; Greer, Sandra C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a266t-6b1bb0802dad603fcaa1bc48094551e0605dc21057ef54909b472b20633a5c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Micelles. Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huff, Alison</creatorcontrib><creatorcontrib>Patton, Kelly</creatorcontrib><creatorcontrib>Odhner, Hosanna</creatorcontrib><creatorcontrib>Jacobs, Donald T</creatorcontrib><creatorcontrib>Clover, Bryna C</creatorcontrib><creatorcontrib>Greer, Sandra C</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huff, Alison</au><au>Patton, Kelly</au><au>Odhner, Hosanna</au><au>Jacobs, Donald T</au><au>Clover, Bryna C</au><au>Greer, Sandra C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micellization and Phase Separation for Triblock Copolymer 17R4 in H2O and in D2O</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>5</issue><spage>1707</spage><epage>1712</epage><pages>1707-1712</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The reverse Pluronic triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14−PEO24−PPO14, where the subscripts denote the number of monomers in each block. In water, 17R4 shows both a transition to aggregated micellar species at lower temperatures and a separation into copolymer-rich and copolymer-poor liquid phases at higher temperatures. For 17R4 in H2O and in D2O, we have determined (1) the phase boundaries corresponding to the micellization line, (2) the cloud point curves marking the onset of phase separation at various compositions, and (3) the coexistence curves for the phase separation (the compositions of coexisting phases). In both H2O and in D2O, 17R4 exhibits coexistence curves with lower consolute temperatures and compositions that differ from the minima in the cloud point curves; we take this as an indication of the polydispersity of the micellar species. The coexistence curves for compositions near the critical composition are described well by an Ising model. For 17R4 in both H2O and D2O, the critical composition is 0.22 ± 0.01 in volume fraction. The critical temperatures differ: 44.8 °C in H2O and 43.6 °C in D2O. The cloud point curve for the 17R4/D2O is as much as 9 °C lower than in H2O.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21244076</pmid><doi>10.1021/la104350g</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2011-03, Vol.27 (5), p.1707-1712
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_853473436
source American Chemical Society Journals
subjects Chemistry
Colloidal state and disperse state
Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams
Exact sciences and technology
General and physical chemistry
Micelles. Thin films
title Micellization and Phase Separation for Triblock Copolymer 17R4 in H2O and in D2O
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micellization%20and%20Phase%20Separation%20for%20Triblock%20Copolymer%2017R4%20in%20H2O%20and%20in%20D2O&rft.jtitle=Langmuir&rft.au=Huff,%20Alison&rft.date=2011-03-01&rft.volume=27&rft.issue=5&rft.spage=1707&rft.epage=1712&rft.pages=1707-1712&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la104350g&rft_dat=%3Cproquest_pubme%3E853473436%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853473436&rft_id=info:pmid/21244076&rfr_iscdi=true