Magnetotellurics and radio-wave interference sounding

The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Physics of the solid earth 2010-09, Vol.46 (9), p.735-738
Hauptverfasser: Khmelevskoy, V. K., Petrukhin, B. P., Pushkarev, P. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 9
container_start_page 735
container_title Izvestiya. Physics of the solid earth
container_volume 46
creator Khmelevskoy, V. K.
Petrukhin, B. P.
Pushkarev, P. Yu
description The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundings, which use the fields of radio stations, expand the frequency band almost up to 1 MHz and make it possible to study the depths from the first few meters. The method of radio-wave interference sounding supplements geoelectric prospecting on plane waves into the range of even higher frequencies (up to 100 MHz). In this case, the conduction and displacement currents become comparable, which makes it possible to distinguish objects both by their electrical conductivity and by their dielectric permittivity. For the two-layered model of a medium, there exist simple kinematic methods of data interpretation of a radio-interferometry sounding. Within multilayer, and especially horizontally heterogeneous, media, methods for solving equations of electrodynamics and inverse problems of geophysics are required. In the present paper, the foundations of the theory of radio-interferometry sounding, the methodology, its role in geoelectric prospecting, and the opportunities for the solution of geological problems are discussed.
doi_str_mv 10.1134/S1069351310090028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853469629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136009681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-125b4c052f53a6694ad6a6ad13e99fc94636ebd17b5ef91ce16664ad7484a3fc3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN3gxtVonncmSym-oOJCXYc0c1OmtElNZhT_vZEKguLqXjjfORwOIaeMXjAm5OUTo6CFYoJRqinl7R6ZMKVUDYrCfvmLXH_ph-Qo5xWlUgqtJ0Q92GXAIQ64Xo-pd7myoauS7fpYv9s3rPowYPKYMDischxD14flMTnwdp3x5PtOycvN9fPsrp4_3t7Prua1FQ0dasbVQjqquFfCAmhpO7BgOyZQa--0BAG46FizUOg1c8gAoECNbKUV3okpOd_lblN8HTEPZtNnV6ragHHMplVCggauC3n2i1zFMYVSzjSKctC8aQvEdpBLMeeE3mxTv7HpwzBqvmY0f2YsHr7z5MKGJaaf4P9NnwLEcyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750269278</pqid></control><display><type>article</type><title>Magnetotellurics and radio-wave interference sounding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khmelevskoy, V. K. ; Petrukhin, B. P. ; Pushkarev, P. Yu</creator><creatorcontrib>Khmelevskoy, V. K. ; Petrukhin, B. P. ; Pushkarev, P. Yu</creatorcontrib><description>The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundings, which use the fields of radio stations, expand the frequency band almost up to 1 MHz and make it possible to study the depths from the first few meters. The method of radio-wave interference sounding supplements geoelectric prospecting on plane waves into the range of even higher frequencies (up to 100 MHz). In this case, the conduction and displacement currents become comparable, which makes it possible to distinguish objects both by their electrical conductivity and by their dielectric permittivity. For the two-layered model of a medium, there exist simple kinematic methods of data interpretation of a radio-interferometry sounding. Within multilayer, and especially horizontally heterogeneous, media, methods for solving equations of electrodynamics and inverse problems of geophysics are required. In the present paper, the foundations of the theory of radio-interferometry sounding, the methodology, its role in geoelectric prospecting, and the opportunities for the solution of geological problems are discussed.</description><identifier>ISSN: 1069-3513</identifier><identifier>EISSN: 1555-6506</identifier><identifier>DOI: 10.1134/S1069351310090028</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Conductivity ; Data interpretation ; Earth and Environmental Science ; Earth Sciences ; Electromagnetic fields ; Electromagnetics ; Frequencies ; Geophysics ; Geophysics/Geodesy ; Interferometry ; Kinematics</subject><ispartof>Izvestiya. Physics of the solid earth, 2010-09, Vol.46 (9), p.735-738</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-125b4c052f53a6694ad6a6ad13e99fc94636ebd17b5ef91ce16664ad7484a3fc3</citedby><cites>FETCH-LOGICAL-a370t-125b4c052f53a6694ad6a6ad13e99fc94636ebd17b5ef91ce16664ad7484a3fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1069351310090028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1069351310090028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Khmelevskoy, V. K.</creatorcontrib><creatorcontrib>Petrukhin, B. P.</creatorcontrib><creatorcontrib>Pushkarev, P. Yu</creatorcontrib><title>Magnetotellurics and radio-wave interference sounding</title><title>Izvestiya. Physics of the solid earth</title><addtitle>Izv., Phys. Solid Earth</addtitle><description>The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundings, which use the fields of radio stations, expand the frequency band almost up to 1 MHz and make it possible to study the depths from the first few meters. The method of radio-wave interference sounding supplements geoelectric prospecting on plane waves into the range of even higher frequencies (up to 100 MHz). In this case, the conduction and displacement currents become comparable, which makes it possible to distinguish objects both by their electrical conductivity and by their dielectric permittivity. For the two-layered model of a medium, there exist simple kinematic methods of data interpretation of a radio-interferometry sounding. Within multilayer, and especially horizontally heterogeneous, media, methods for solving equations of electrodynamics and inverse problems of geophysics are required. In the present paper, the foundations of the theory of radio-interferometry sounding, the methodology, its role in geoelectric prospecting, and the opportunities for the solution of geological problems are discussed.</description><subject>Conductivity</subject><subject>Data interpretation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electromagnetic fields</subject><subject>Electromagnetics</subject><subject>Frequencies</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Interferometry</subject><subject>Kinematics</subject><issn>1069-3513</issn><issn>1555-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN3gxtVonncmSym-oOJCXYc0c1OmtElNZhT_vZEKguLqXjjfORwOIaeMXjAm5OUTo6CFYoJRqinl7R6ZMKVUDYrCfvmLXH_ph-Qo5xWlUgqtJ0Q92GXAIQ64Xo-pd7myoauS7fpYv9s3rPowYPKYMDischxD14flMTnwdp3x5PtOycvN9fPsrp4_3t7Prua1FQ0dasbVQjqquFfCAmhpO7BgOyZQa--0BAG46FizUOg1c8gAoECNbKUV3okpOd_lblN8HTEPZtNnV6ragHHMplVCggauC3n2i1zFMYVSzjSKctC8aQvEdpBLMeeE3mxTv7HpwzBqvmY0f2YsHr7z5MKGJaaf4P9NnwLEcyU</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Khmelevskoy, V. K.</creator><creator>Petrukhin, B. P.</creator><creator>Pushkarev, P. Yu</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TN</scope></search><sort><creationdate>20100901</creationdate><title>Magnetotellurics and radio-wave interference sounding</title><author>Khmelevskoy, V. K. ; Petrukhin, B. P. ; Pushkarev, P. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-125b4c052f53a6694ad6a6ad13e99fc94636ebd17b5ef91ce16664ad7484a3fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Conductivity</topic><topic>Data interpretation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electromagnetic fields</topic><topic>Electromagnetics</topic><topic>Frequencies</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Interferometry</topic><topic>Kinematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khmelevskoy, V. K.</creatorcontrib><creatorcontrib>Petrukhin, B. P.</creatorcontrib><creatorcontrib>Pushkarev, P. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Oceanic Abstracts</collection><jtitle>Izvestiya. Physics of the solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khmelevskoy, V. K.</au><au>Petrukhin, B. P.</au><au>Pushkarev, P. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetotellurics and radio-wave interference sounding</atitle><jtitle>Izvestiya. Physics of the solid earth</jtitle><stitle>Izv., Phys. Solid Earth</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>46</volume><issue>9</issue><spage>735</spage><epage>738</epage><pages>735-738</pages><issn>1069-3513</issn><eissn>1555-6506</eissn><abstract>The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundings, which use the fields of radio stations, expand the frequency band almost up to 1 MHz and make it possible to study the depths from the first few meters. The method of radio-wave interference sounding supplements geoelectric prospecting on plane waves into the range of even higher frequencies (up to 100 MHz). In this case, the conduction and displacement currents become comparable, which makes it possible to distinguish objects both by their electrical conductivity and by their dielectric permittivity. For the two-layered model of a medium, there exist simple kinematic methods of data interpretation of a radio-interferometry sounding. Within multilayer, and especially horizontally heterogeneous, media, methods for solving equations of electrodynamics and inverse problems of geophysics are required. In the present paper, the foundations of the theory of radio-interferometry sounding, the methodology, its role in geoelectric prospecting, and the opportunities for the solution of geological problems are discussed.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1069351310090028</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-3513
ispartof Izvestiya. Physics of the solid earth, 2010-09, Vol.46 (9), p.735-738
issn 1069-3513
1555-6506
language eng
recordid cdi_proquest_miscellaneous_853469629
source SpringerLink Journals - AutoHoldings
subjects Conductivity
Data interpretation
Earth and Environmental Science
Earth Sciences
Electromagnetic fields
Electromagnetics
Frequencies
Geophysics
Geophysics/Geodesy
Interferometry
Kinematics
title Magnetotellurics and radio-wave interference sounding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetotellurics%20and%20radio-wave%20interference%20sounding&rft.jtitle=Izvestiya.%20Physics%20of%20the%20solid%20earth&rft.au=Khmelevskoy,%20V.%20K.&rft.date=2010-09-01&rft.volume=46&rft.issue=9&rft.spage=735&rft.epage=738&rft.pages=735-738&rft.issn=1069-3513&rft.eissn=1555-6506&rft_id=info:doi/10.1134/S1069351310090028&rft_dat=%3Cproquest_cross%3E2136009681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750269278&rft_id=info:pmid/&rfr_iscdi=true