Prediction of speech intelligibility based on an auditory preprocessing model

Classical speech intelligibility models, such as the speech transmission index (STI) and the speech intelligibility index (SII) are based on calculations on the physical acoustic signals. The present study predicts speech intelligibility by combining a psychoacoustically validated model of auditory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Speech communication 2010-07, Vol.52 (7), p.678-692
Hauptverfasser: Christiansen, Claus, Pedersen, Michael Syskind, Dau, Torsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 7
container_start_page 678
container_title Speech communication
container_volume 52
creator Christiansen, Claus
Pedersen, Michael Syskind
Dau, Torsten
description Classical speech intelligibility models, such as the speech transmission index (STI) and the speech intelligibility index (SII) are based on calculations on the physical acoustic signals. The present study predicts speech intelligibility by combining a psychoacoustically validated model of auditory preprocessing [Dau et al., 1997. J. Acoust. Soc. Am. 102, 2892–2905] with a simple central stage that describes the similarity of the test signal with the corresponding reference signal at a level of the internal representation of the signals. The model was compared with previous approaches, whereby a speech in noise experiment was used for training and an ideal binary mask experiment was used for evaluation. All three models were able to capture the trends in the speech in noise training data well, but the proposed model provides a better prediction of the binary mask test data, particularly when the binary masks degenerate to a noise vocoder.
doi_str_mv 10.1016/j.specom.2010.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853230194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167639310000440</els_id><sourcerecordid>853230194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-33479377ce9279b7cb3ca4d8c76cd9c61de66a7b0d2d625c3b6cdf19fce1583d3</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMoOI5-Aw99Eb30bJLqTtIXQRb_LKzoQc8hXaleM_R0xqRHmG9vLbN4XKGgoPjVq-I9IV4ruVNSmav9rh4J82GnJY8k7KTsnoiNcla3Vjn9VGwYs62BAZ6LF7XuJRPO6Y34-r1QTLimvDR5aliH8FeTlpXmOd2lMc1pPTdjqBQbRgLXKaY1l3NzLHQsGanWtNw1hxxpfimeTWGu9Oqhb8XPTx9_XH9pb799vrn-cNtiB7C2AJ0dwFqkQdthtDgChi46tAbjgEZFMibYUUYdje4RRp5PapiQVO8gwla8vejyA79PVFd_SBX55bBQPlXvetAg1dD9l7Q9OC2NGZh89yjJBiqQRrLyVnQXFEuutdDkjyUdQjl7Jf19In7vL4n4-0S8BM9-89qbhwuhYpinEhZM9d-u1k65Xjvm3l84Ygv_JCq-YqIFOahCuPqY0-OH_gIAHKOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671306032</pqid></control><display><type>article</type><title>Prediction of speech intelligibility based on an auditory preprocessing model</title><source>Elsevier ScienceDirect Journals</source><creator>Christiansen, Claus ; Pedersen, Michael Syskind ; Dau, Torsten</creator><creatorcontrib>Christiansen, Claus ; Pedersen, Michael Syskind ; Dau, Torsten</creatorcontrib><description>Classical speech intelligibility models, such as the speech transmission index (STI) and the speech intelligibility index (SII) are based on calculations on the physical acoustic signals. The present study predicts speech intelligibility by combining a psychoacoustically validated model of auditory preprocessing [Dau et al., 1997. J. Acoust. Soc. Am. 102, 2892–2905] with a simple central stage that describes the similarity of the test signal with the corresponding reference signal at a level of the internal representation of the signals. The model was compared with previous approaches, whereby a speech in noise experiment was used for training and an ideal binary mask experiment was used for evaluation. All three models were able to capture the trends in the speech in noise training data well, but the proposed model provides a better prediction of the binary mask test data, particularly when the binary masks degenerate to a noise vocoder.</description><identifier>ISSN: 0167-6393</identifier><identifier>EISSN: 1872-7182</identifier><identifier>DOI: 10.1016/j.specom.2010.03.004</identifier><identifier>CODEN: SCOMDH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Auditory processing model ; Exact sciences and technology ; Ideal binary mask ; Information, signal and communications theory ; Intelligibility ; Masks ; Mathematical models ; Noise ; Preprocessing ; Signal processing ; Similarity ; Speech ; Speech intelligibility ; Speech intelligibility index ; Speech processing ; Speech transmission index ; Telecommunications and information theory ; Training</subject><ispartof>Speech communication, 2010-07, Vol.52 (7), p.678-692</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-33479377ce9279b7cb3ca4d8c76cd9c61de66a7b0d2d625c3b6cdf19fce1583d3</citedby><cites>FETCH-LOGICAL-c433t-33479377ce9279b7cb3ca4d8c76cd9c61de66a7b0d2d625c3b6cdf19fce1583d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167639310000440$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22818528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Christiansen, Claus</creatorcontrib><creatorcontrib>Pedersen, Michael Syskind</creatorcontrib><creatorcontrib>Dau, Torsten</creatorcontrib><title>Prediction of speech intelligibility based on an auditory preprocessing model</title><title>Speech communication</title><description>Classical speech intelligibility models, such as the speech transmission index (STI) and the speech intelligibility index (SII) are based on calculations on the physical acoustic signals. The present study predicts speech intelligibility by combining a psychoacoustically validated model of auditory preprocessing [Dau et al., 1997. J. Acoust. Soc. Am. 102, 2892–2905] with a simple central stage that describes the similarity of the test signal with the corresponding reference signal at a level of the internal representation of the signals. The model was compared with previous approaches, whereby a speech in noise experiment was used for training and an ideal binary mask experiment was used for evaluation. All three models were able to capture the trends in the speech in noise training data well, but the proposed model provides a better prediction of the binary mask test data, particularly when the binary masks degenerate to a noise vocoder.</description><subject>Applied sciences</subject><subject>Auditory processing model</subject><subject>Exact sciences and technology</subject><subject>Ideal binary mask</subject><subject>Information, signal and communications theory</subject><subject>Intelligibility</subject><subject>Masks</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Preprocessing</subject><subject>Signal processing</subject><subject>Similarity</subject><subject>Speech</subject><subject>Speech intelligibility</subject><subject>Speech intelligibility index</subject><subject>Speech processing</subject><subject>Speech transmission index</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><issn>0167-6393</issn><issn>1872-7182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxYMoOI5-Aw99Eb30bJLqTtIXQRb_LKzoQc8hXaleM_R0xqRHmG9vLbN4XKGgoPjVq-I9IV4ruVNSmav9rh4J82GnJY8k7KTsnoiNcla3Vjn9VGwYs62BAZ6LF7XuJRPO6Y34-r1QTLimvDR5aliH8FeTlpXmOd2lMc1pPTdjqBQbRgLXKaY1l3NzLHQsGanWtNw1hxxpfimeTWGu9Oqhb8XPTx9_XH9pb799vrn-cNtiB7C2AJ0dwFqkQdthtDgChi46tAbjgEZFMibYUUYdje4RRp5PapiQVO8gwla8vejyA79PVFd_SBX55bBQPlXvetAg1dD9l7Q9OC2NGZh89yjJBiqQRrLyVnQXFEuutdDkjyUdQjl7Jf19In7vL4n4-0S8BM9-89qbhwuhYpinEhZM9d-u1k65Xjvm3l84Ygv_JCq-YqIFOahCuPqY0-OH_gIAHKOY</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Christiansen, Claus</creator><creator>Pedersen, Michael Syskind</creator><creator>Dau, Torsten</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7T9</scope><scope>8BM</scope></search><sort><creationdate>20100701</creationdate><title>Prediction of speech intelligibility based on an auditory preprocessing model</title><author>Christiansen, Claus ; Pedersen, Michael Syskind ; Dau, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-33479377ce9279b7cb3ca4d8c76cd9c61de66a7b0d2d625c3b6cdf19fce1583d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Auditory processing model</topic><topic>Exact sciences and technology</topic><topic>Ideal binary mask</topic><topic>Information, signal and communications theory</topic><topic>Intelligibility</topic><topic>Masks</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Preprocessing</topic><topic>Signal processing</topic><topic>Similarity</topic><topic>Speech</topic><topic>Speech intelligibility</topic><topic>Speech intelligibility index</topic><topic>Speech processing</topic><topic>Speech transmission index</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Claus</creatorcontrib><creatorcontrib>Pedersen, Michael Syskind</creatorcontrib><creatorcontrib>Dau, Torsten</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ComDisDome</collection><jtitle>Speech communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Claus</au><au>Pedersen, Michael Syskind</au><au>Dau, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of speech intelligibility based on an auditory preprocessing model</atitle><jtitle>Speech communication</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>52</volume><issue>7</issue><spage>678</spage><epage>692</epage><pages>678-692</pages><issn>0167-6393</issn><eissn>1872-7182</eissn><coden>SCOMDH</coden><abstract>Classical speech intelligibility models, such as the speech transmission index (STI) and the speech intelligibility index (SII) are based on calculations on the physical acoustic signals. The present study predicts speech intelligibility by combining a psychoacoustically validated model of auditory preprocessing [Dau et al., 1997. J. Acoust. Soc. Am. 102, 2892–2905] with a simple central stage that describes the similarity of the test signal with the corresponding reference signal at a level of the internal representation of the signals. The model was compared with previous approaches, whereby a speech in noise experiment was used for training and an ideal binary mask experiment was used for evaluation. All three models were able to capture the trends in the speech in noise training data well, but the proposed model provides a better prediction of the binary mask test data, particularly when the binary masks degenerate to a noise vocoder.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.specom.2010.03.004</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6393
ispartof Speech communication, 2010-07, Vol.52 (7), p.678-692
issn 0167-6393
1872-7182
language eng
recordid cdi_proquest_miscellaneous_853230194
source Elsevier ScienceDirect Journals
subjects Applied sciences
Auditory processing model
Exact sciences and technology
Ideal binary mask
Information, signal and communications theory
Intelligibility
Masks
Mathematical models
Noise
Preprocessing
Signal processing
Similarity
Speech
Speech intelligibility
Speech intelligibility index
Speech processing
Speech transmission index
Telecommunications and information theory
Training
title Prediction of speech intelligibility based on an auditory preprocessing model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20speech%20intelligibility%20based%20on%20an%20auditory%20preprocessing%20model&rft.jtitle=Speech%20communication&rft.au=Christiansen,%20Claus&rft.date=2010-07-01&rft.volume=52&rft.issue=7&rft.spage=678&rft.epage=692&rft.pages=678-692&rft.issn=0167-6393&rft.eissn=1872-7182&rft.coden=SCOMDH&rft_id=info:doi/10.1016/j.specom.2010.03.004&rft_dat=%3Cproquest_cross%3E853230194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671306032&rft_id=info:pmid/&rft_els_id=S0167639310000440&rfr_iscdi=true