The user model-based summarize and refine approach improves information presentation in spoken dialog systems
A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option spac...
Gespeichert in:
Veröffentlicht in: | Computer speech & language 2011-04, Vol.25 (2), p.175-191 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 2 |
container_start_page | 175 |
container_title | Computer speech & language |
container_volume | 25 |
creator | Winterboer, Andi K. Tietze, Martin I. Wolters, Maria K. Moore, Johanna D. |
description | A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli. |
doi_str_mv | 10.1016/j.csl.2010.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853227204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885230810000343</els_id><sourcerecordid>837448767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</originalsourceid><addsrcrecordid>eNqNUcuO1DAQtBBIDAsfwM03Thnaj9iJOKEVL2klLsvZcuwO6yGxgzuz0vL1eDWcgVNXSVXdrSrGXgs4ChDm7ekYaDlKaBz0EUA9YQcBY98Nyqin7ADD0HdSwfCcvSA6AYDptT2w9fYO-Zmw8rVEXLrJE0ZO53X1Nf1C7nPkFeeUG9y2Wny442lt4B6JpzyXuvo9lcy3ioR5v5CUOW3lB2Yek1_Kd04PtONKL9mz2S-Er_7MK_bt44fb68_dzddPX67f33RBK7N3UVoxShxMEFZjjEZ4OU3THMHPozfG98Foq1Ts5YwBJ-nVaGYY0Mvgwc7qir257G2P_jwj7W5NFHBZfMZyJjf0SkorQf9bqcd2SYr_UCqr9WCNbUpxUYZaiFp6bqup5fngBLjHttzJtbbcY1sOtGttNc-7iwdbLPcJq6OQMAeMqWLYXSzpL-7fC6mftg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837448767</pqid></control><display><type>article</type><title>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Winterboer, Andi K. ; Tietze, Martin I. ; Wolters, Maria K. ; Moore, Johanna D.</creator><creatorcontrib>Winterboer, Andi K. ; Tietze, Martin I. ; Wolters, Maria K. ; Moore, Johanna D.</creatorcontrib><description>A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.</description><identifier>ISSN: 0885-2308</identifier><identifier>EISSN: 1095-8363</identifier><identifier>DOI: 10.1016/j.csl.2010.04.003</identifier><identifier>CODEN: CSPLEO</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Cues ; Devices ; Discourse markers ; Information presentation ; Recall ; Spoken dialog systems ; Stimuli ; Summaries ; Tasks ; User modeling ; User satisfaction</subject><ispartof>Computer speech & language, 2011-04, Vol.25 (2), p.175-191</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</citedby><cites>FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csl.2010.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Winterboer, Andi K.</creatorcontrib><creatorcontrib>Tietze, Martin I.</creatorcontrib><creatorcontrib>Wolters, Maria K.</creatorcontrib><creatorcontrib>Moore, Johanna D.</creatorcontrib><title>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</title><title>Computer speech & language</title><description>A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.</description><subject>Computer simulation</subject><subject>Cues</subject><subject>Devices</subject><subject>Discourse markers</subject><subject>Information presentation</subject><subject>Recall</subject><subject>Spoken dialog systems</subject><subject>Stimuli</subject><subject>Summaries</subject><subject>Tasks</subject><subject>User modeling</subject><subject>User satisfaction</subject><issn>0885-2308</issn><issn>1095-8363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUcuO1DAQtBBIDAsfwM03Thnaj9iJOKEVL2klLsvZcuwO6yGxgzuz0vL1eDWcgVNXSVXdrSrGXgs4ChDm7ekYaDlKaBz0EUA9YQcBY98Nyqin7ADD0HdSwfCcvSA6AYDptT2w9fYO-Zmw8rVEXLrJE0ZO53X1Nf1C7nPkFeeUG9y2Wny442lt4B6JpzyXuvo9lcy3ioR5v5CUOW3lB2Yek1_Kd04PtONKL9mz2S-Er_7MK_bt44fb68_dzddPX67f33RBK7N3UVoxShxMEFZjjEZ4OU3THMHPozfG98Foq1Ts5YwBJ-nVaGYY0Mvgwc7qir257G2P_jwj7W5NFHBZfMZyJjf0SkorQf9bqcd2SYr_UCqr9WCNbUpxUYZaiFp6bqup5fngBLjHttzJtbbcY1sOtGttNc-7iwdbLPcJq6OQMAeMqWLYXSzpL-7fC6mftg</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Winterboer, Andi K.</creator><creator>Tietze, Martin I.</creator><creator>Wolters, Maria K.</creator><creator>Moore, Johanna D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BM</scope></search><sort><creationdate>20110401</creationdate><title>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</title><author>Winterboer, Andi K. ; Tietze, Martin I. ; Wolters, Maria K. ; Moore, Johanna D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Cues</topic><topic>Devices</topic><topic>Discourse markers</topic><topic>Information presentation</topic><topic>Recall</topic><topic>Spoken dialog systems</topic><topic>Stimuli</topic><topic>Summaries</topic><topic>Tasks</topic><topic>User modeling</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winterboer, Andi K.</creatorcontrib><creatorcontrib>Tietze, Martin I.</creatorcontrib><creatorcontrib>Wolters, Maria K.</creatorcontrib><creatorcontrib>Moore, Johanna D.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ComDisDome</collection><jtitle>Computer speech & language</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winterboer, Andi K.</au><au>Tietze, Martin I.</au><au>Wolters, Maria K.</au><au>Moore, Johanna D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</atitle><jtitle>Computer speech & language</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>25</volume><issue>2</issue><spage>175</spage><epage>191</epage><pages>175-191</pages><issn>0885-2308</issn><eissn>1095-8363</eissn><coden>CSPLEO</coden><abstract>A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csl.2010.04.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-2308 |
ispartof | Computer speech & language, 2011-04, Vol.25 (2), p.175-191 |
issn | 0885-2308 1095-8363 |
language | eng |
recordid | cdi_proquest_miscellaneous_853227204 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computer simulation Cues Devices Discourse markers Information presentation Recall Spoken dialog systems Stimuli Summaries Tasks User modeling User satisfaction |
title | The user model-based summarize and refine approach improves information presentation in spoken dialog systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20user%20model-based%20summarize%20and%20refine%20approach%20improves%20information%20presentation%20in%20spoken%20dialog%20systems&rft.jtitle=Computer%20speech%20&%20language&rft.au=Winterboer,%20Andi%20K.&rft.date=2011-04-01&rft.volume=25&rft.issue=2&rft.spage=175&rft.epage=191&rft.pages=175-191&rft.issn=0885-2308&rft.eissn=1095-8363&rft.coden=CSPLEO&rft_id=info:doi/10.1016/j.csl.2010.04.003&rft_dat=%3Cproquest_cross%3E837448767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=837448767&rft_id=info:pmid/&rft_els_id=S0885230810000343&rfr_iscdi=true |