The user model-based summarize and refine approach improves information presentation in spoken dialog systems

A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer speech & language 2011-04, Vol.25 (2), p.175-191
Hauptverfasser: Winterboer, Andi K., Tietze, Martin I., Wolters, Maria K., Moore, Johanna D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 2
container_start_page 175
container_title Computer speech & language
container_volume 25
creator Winterboer, Andi K.
Tietze, Martin I.
Wolters, Maria K.
Moore, Johanna D.
description A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.
doi_str_mv 10.1016/j.csl.2010.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853227204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885230810000343</els_id><sourcerecordid>837448767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</originalsourceid><addsrcrecordid>eNqNUcuO1DAQtBBIDAsfwM03Thnaj9iJOKEVL2klLsvZcuwO6yGxgzuz0vL1eDWcgVNXSVXdrSrGXgs4ChDm7ekYaDlKaBz0EUA9YQcBY98Nyqin7ADD0HdSwfCcvSA6AYDptT2w9fYO-Zmw8rVEXLrJE0ZO53X1Nf1C7nPkFeeUG9y2Wny442lt4B6JpzyXuvo9lcy3ioR5v5CUOW3lB2Yek1_Kd04PtONKL9mz2S-Er_7MK_bt44fb68_dzddPX67f33RBK7N3UVoxShxMEFZjjEZ4OU3THMHPozfG98Foq1Ts5YwBJ-nVaGYY0Mvgwc7qir257G2P_jwj7W5NFHBZfMZyJjf0SkorQf9bqcd2SYr_UCqr9WCNbUpxUYZaiFp6bqup5fngBLjHttzJtbbcY1sOtGttNc-7iwdbLPcJq6OQMAeMqWLYXSzpL-7fC6mftg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837448767</pqid></control><display><type>article</type><title>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Winterboer, Andi K. ; Tietze, Martin I. ; Wolters, Maria K. ; Moore, Johanna D.</creator><creatorcontrib>Winterboer, Andi K. ; Tietze, Martin I. ; Wolters, Maria K. ; Moore, Johanna D.</creatorcontrib><description>A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.</description><identifier>ISSN: 0885-2308</identifier><identifier>EISSN: 1095-8363</identifier><identifier>DOI: 10.1016/j.csl.2010.04.003</identifier><identifier>CODEN: CSPLEO</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Cues ; Devices ; Discourse markers ; Information presentation ; Recall ; Spoken dialog systems ; Stimuli ; Summaries ; Tasks ; User modeling ; User satisfaction</subject><ispartof>Computer speech &amp; language, 2011-04, Vol.25 (2), p.175-191</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</citedby><cites>FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csl.2010.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Winterboer, Andi K.</creatorcontrib><creatorcontrib>Tietze, Martin I.</creatorcontrib><creatorcontrib>Wolters, Maria K.</creatorcontrib><creatorcontrib>Moore, Johanna D.</creatorcontrib><title>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</title><title>Computer speech &amp; language</title><description>A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.</description><subject>Computer simulation</subject><subject>Cues</subject><subject>Devices</subject><subject>Discourse markers</subject><subject>Information presentation</subject><subject>Recall</subject><subject>Spoken dialog systems</subject><subject>Stimuli</subject><subject>Summaries</subject><subject>Tasks</subject><subject>User modeling</subject><subject>User satisfaction</subject><issn>0885-2308</issn><issn>1095-8363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUcuO1DAQtBBIDAsfwM03Thnaj9iJOKEVL2klLsvZcuwO6yGxgzuz0vL1eDWcgVNXSVXdrSrGXgs4ChDm7ekYaDlKaBz0EUA9YQcBY98Nyqin7ADD0HdSwfCcvSA6AYDptT2w9fYO-Zmw8rVEXLrJE0ZO53X1Nf1C7nPkFeeUG9y2Wny442lt4B6JpzyXuvo9lcy3ioR5v5CUOW3lB2Yek1_Kd04PtONKL9mz2S-Er_7MK_bt44fb68_dzddPX67f33RBK7N3UVoxShxMEFZjjEZ4OU3THMHPozfG98Foq1Ts5YwBJ-nVaGYY0Mvgwc7qir257G2P_jwj7W5NFHBZfMZyJjf0SkorQf9bqcd2SYr_UCqr9WCNbUpxUYZaiFp6bqup5fngBLjHttzJtbbcY1sOtGttNc-7iwdbLPcJq6OQMAeMqWLYXSzpL-7fC6mftg</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Winterboer, Andi K.</creator><creator>Tietze, Martin I.</creator><creator>Wolters, Maria K.</creator><creator>Moore, Johanna D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BM</scope></search><sort><creationdate>20110401</creationdate><title>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</title><author>Winterboer, Andi K. ; Tietze, Martin I. ; Wolters, Maria K. ; Moore, Johanna D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d27192e86c174edd61a2bbbfd0af9a66a5c64733d52feceb2a396f08ea2ca07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Cues</topic><topic>Devices</topic><topic>Discourse markers</topic><topic>Information presentation</topic><topic>Recall</topic><topic>Spoken dialog systems</topic><topic>Stimuli</topic><topic>Summaries</topic><topic>Tasks</topic><topic>User modeling</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winterboer, Andi K.</creatorcontrib><creatorcontrib>Tietze, Martin I.</creatorcontrib><creatorcontrib>Wolters, Maria K.</creatorcontrib><creatorcontrib>Moore, Johanna D.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ComDisDome</collection><jtitle>Computer speech &amp; language</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winterboer, Andi K.</au><au>Tietze, Martin I.</au><au>Wolters, Maria K.</au><au>Moore, Johanna D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The user model-based summarize and refine approach improves information presentation in spoken dialog systems</atitle><jtitle>Computer speech &amp; language</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>25</volume><issue>2</issue><spage>175</spage><epage>191</epage><pages>175-191</pages><issn>0885-2308</issn><eissn>1095-8363</eissn><coden>CSPLEO</coden><abstract>A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csl.2010.04.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-2308
ispartof Computer speech & language, 2011-04, Vol.25 (2), p.175-191
issn 0885-2308
1095-8363
language eng
recordid cdi_proquest_miscellaneous_853227204
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Cues
Devices
Discourse markers
Information presentation
Recall
Spoken dialog systems
Stimuli
Summaries
Tasks
User modeling
User satisfaction
title The user model-based summarize and refine approach improves information presentation in spoken dialog systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20user%20model-based%20summarize%20and%20refine%20approach%20improves%20information%20presentation%20in%20spoken%20dialog%20systems&rft.jtitle=Computer%20speech%20&%20language&rft.au=Winterboer,%20Andi%20K.&rft.date=2011-04-01&rft.volume=25&rft.issue=2&rft.spage=175&rft.epage=191&rft.pages=175-191&rft.issn=0885-2308&rft.eissn=1095-8363&rft.coden=CSPLEO&rft_id=info:doi/10.1016/j.csl.2010.04.003&rft_dat=%3Cproquest_cross%3E837448767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=837448767&rft_id=info:pmid/&rft_els_id=S0885230810000343&rfr_iscdi=true