Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution

The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2011-02, Vol.17 (9), p.2777-2785
Hauptverfasser: Kotani, Hiroaki, Hanazaki, Ryo, Ohkubo, Kei, Yamada, Yusuke, Fukuzumi, Shunichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2785
container_issue 9
container_start_page 2777
container_title Chemistry : a European journal
container_volume 17
creator Kotani, Hiroaki
Hanazaki, Ryo
Ohkubo, Kei
Yamada, Yusuke
Fukuzumi, Shunichi
description The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs. Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).
doi_str_mv 10.1002/chem.201002399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853222812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>853222812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</originalsourceid><addsrcrecordid>eNqFkU9v0zAYhy0EYqVw5YgscYBLiv_ETsxtKmWdtBakgtjNcpI3q0dqd7E7CB-Ez4tLtwpxgJNt-fk9r60fQs8pmVBC2Jt6DZsJI_s9V-oBGlHBaMYLKR6iEVF5kUnB1Ql6EsI1IURJzh-jE0ZZmTLlCP1c2R-QYeMavFqbLWTvYAuuARfxaR3trY0D9i1eQDQdXhrnt6aPtu4gYBPwfGh6fwUum936bhetd3hqEjmEGN6mUL02zobE43MX7NU6Bmxd9Pjj2kdf_yb3l_cafNQ8RY9a0wV4dreO0ef3s0_TeXbx4ex8enqR1XnOVSYK1VaVqASXjZQqr3glCFPpwDhRTEgigDFTt7JoG5FXeQMKqpIIAsDbmvIxenXwbnt_s4MQ9caGGrrOOPC7oEvBGWMlZYl8_U-SFkVJeFmkd43Ry7_Qa7_rXfpHoqSUtCjpfvTkQNW9D6GHVm97uzH9oCnR-z71vlt97DYFXtxpd9UGmiN-X2YC1AH4ZjsY_qPT0_ls8ac8O2RTXfD9mDX9Vy0LXgj9ZXmmL5dqdblQC53zXzkiwRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766617811</pqid></control><display><type>article</type><title>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Kotani, Hiroaki ; Hanazaki, Ryo ; Ohkubo, Kei ; Yamada, Yusuke ; Fukuzumi, Shunichi</creator><creatorcontrib>Kotani, Hiroaki ; Hanazaki, Ryo ; Ohkubo, Kei ; Yamada, Yusuke ; Fukuzumi, Shunichi</creatorcontrib><description>The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs. Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201002399</identifier><identifier>PMID: 21280108</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Acridines - chemistry ; Catalysis ; Catalytic activity ; Chemistry ; Electron transfer ; Electrons ; hydrogen ; Hydrogen - chemistry ; Hydrogen evolution ; Inverse ; Iron - chemistry ; Isotope effect ; isotope effects ; Isotopes - chemistry ; Kinetics ; metal nanoparticles ; Metal Nanoparticles - chemistry ; Molecular Structure ; NAD - chemistry ; Nanoparticles ; Photocatalysis ; photocatalysts ; Platinum - chemistry ; Rate constants</subject><ispartof>Chemistry : a European journal, 2011-02, Vol.17 (9), p.2777-2785</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</citedby><cites>FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201002399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201002399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21280108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotani, Hiroaki</creatorcontrib><creatorcontrib>Hanazaki, Ryo</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Yamada, Yusuke</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><title>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs. Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).</description><subject>Acridines - chemistry</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen evolution</subject><subject>Inverse</subject><subject>Iron - chemistry</subject><subject>Isotope effect</subject><subject>isotope effects</subject><subject>Isotopes - chemistry</subject><subject>Kinetics</subject><subject>metal nanoparticles</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Structure</subject><subject>NAD - chemistry</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>photocatalysts</subject><subject>Platinum - chemistry</subject><subject>Rate constants</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v0zAYhy0EYqVw5YgscYBLiv_ETsxtKmWdtBakgtjNcpI3q0dqd7E7CB-Ez4tLtwpxgJNt-fk9r60fQs8pmVBC2Jt6DZsJI_s9V-oBGlHBaMYLKR6iEVF5kUnB1Ql6EsI1IURJzh-jE0ZZmTLlCP1c2R-QYeMavFqbLWTvYAuuARfxaR3trY0D9i1eQDQdXhrnt6aPtu4gYBPwfGh6fwUum936bhetd3hqEjmEGN6mUL02zobE43MX7NU6Bmxd9Pjj2kdf_yb3l_cafNQ8RY9a0wV4dreO0ef3s0_TeXbx4ex8enqR1XnOVSYK1VaVqASXjZQqr3glCFPpwDhRTEgigDFTt7JoG5FXeQMKqpIIAsDbmvIxenXwbnt_s4MQ9caGGrrOOPC7oEvBGWMlZYl8_U-SFkVJeFmkd43Ry7_Qa7_rXfpHoqSUtCjpfvTkQNW9D6GHVm97uzH9oCnR-z71vlt97DYFXtxpd9UGmiN-X2YC1AH4ZjsY_qPT0_ls8ac8O2RTXfD9mDX9Vy0LXgj9ZXmmL5dqdblQC53zXzkiwRg</recordid><startdate>20110225</startdate><enddate>20110225</enddate><creator>Kotani, Hiroaki</creator><creator>Hanazaki, Ryo</creator><creator>Ohkubo, Kei</creator><creator>Yamada, Yusuke</creator><creator>Fukuzumi, Shunichi</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20110225</creationdate><title>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</title><author>Kotani, Hiroaki ; Hanazaki, Ryo ; Ohkubo, Kei ; Yamada, Yusuke ; Fukuzumi, Shunichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acridines - chemistry</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen evolution</topic><topic>Inverse</topic><topic>Iron - chemistry</topic><topic>Isotope effect</topic><topic>isotope effects</topic><topic>Isotopes - chemistry</topic><topic>Kinetics</topic><topic>metal nanoparticles</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Structure</topic><topic>NAD - chemistry</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>photocatalysts</topic><topic>Platinum - chemistry</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotani, Hiroaki</creatorcontrib><creatorcontrib>Hanazaki, Ryo</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Yamada, Yusuke</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotani, Hiroaki</au><au>Hanazaki, Ryo</au><au>Ohkubo, Kei</au><au>Yamada, Yusuke</au><au>Fukuzumi, Shunichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2011-02-25</date><risdate>2011</risdate><volume>17</volume><issue>9</issue><spage>2777</spage><epage>2785</epage><pages>2777-2785</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs. Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21280108</pmid><doi>10.1002/chem.201002399</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2011-02, Vol.17 (9), p.2777-2785
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_853222812
source Wiley-Blackwell Journals; MEDLINE
subjects Acridines - chemistry
Catalysis
Catalytic activity
Chemistry
Electron transfer
Electrons
hydrogen
Hydrogen - chemistry
Hydrogen evolution
Inverse
Iron - chemistry
Isotope effect
isotope effects
Isotopes - chemistry
Kinetics
metal nanoparticles
Metal Nanoparticles - chemistry
Molecular Structure
NAD - chemistry
Nanoparticles
Photocatalysis
photocatalysts
Platinum - chemistry
Rate constants
title Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-%20and%20Shape-Dependent%20Activity%20of%20Metal%20Nanoparticles%20as%20Hydrogen-Evolution%20Catalysts:%20Mechanistic%20Insights%20into%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kotani,%20Hiroaki&rft.date=2011-02-25&rft.volume=17&rft.issue=9&rft.spage=2777&rft.epage=2785&rft.pages=2777-2785&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201002399&rft_dat=%3Cproquest_cross%3E853222812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766617811&rft_id=info:pmid/21280108&rfr_iscdi=true