Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution
The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2011-02, Vol.17 (9), p.2777-2785 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2785 |
---|---|
container_issue | 9 |
container_start_page | 2777 |
container_title | Chemistry : a European journal |
container_volume | 17 |
creator | Kotani, Hiroaki Hanazaki, Ryo Ohkubo, Kei Yamada, Yusuke Fukuzumi, Shunichi |
description | The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs.
Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture). |
doi_str_mv | 10.1002/chem.201002399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853222812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>853222812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</originalsourceid><addsrcrecordid>eNqFkU9v0zAYhy0EYqVw5YgscYBLiv_ETsxtKmWdtBakgtjNcpI3q0dqd7E7CB-Ez4tLtwpxgJNt-fk9r60fQs8pmVBC2Jt6DZsJI_s9V-oBGlHBaMYLKR6iEVF5kUnB1Ql6EsI1IURJzh-jE0ZZmTLlCP1c2R-QYeMavFqbLWTvYAuuARfxaR3trY0D9i1eQDQdXhrnt6aPtu4gYBPwfGh6fwUum936bhetd3hqEjmEGN6mUL02zobE43MX7NU6Bmxd9Pjj2kdf_yb3l_cafNQ8RY9a0wV4dreO0ef3s0_TeXbx4ex8enqR1XnOVSYK1VaVqASXjZQqr3glCFPpwDhRTEgigDFTt7JoG5FXeQMKqpIIAsDbmvIxenXwbnt_s4MQ9caGGrrOOPC7oEvBGWMlZYl8_U-SFkVJeFmkd43Ry7_Qa7_rXfpHoqSUtCjpfvTkQNW9D6GHVm97uzH9oCnR-z71vlt97DYFXtxpd9UGmiN-X2YC1AH4ZjsY_qPT0_ls8ac8O2RTXfD9mDX9Vy0LXgj9ZXmmL5dqdblQC53zXzkiwRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766617811</pqid></control><display><type>article</type><title>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Kotani, Hiroaki ; Hanazaki, Ryo ; Ohkubo, Kei ; Yamada, Yusuke ; Fukuzumi, Shunichi</creator><creatorcontrib>Kotani, Hiroaki ; Hanazaki, Ryo ; Ohkubo, Kei ; Yamada, Yusuke ; Fukuzumi, Shunichi</creatorcontrib><description>The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs.
Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201002399</identifier><identifier>PMID: 21280108</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Acridines - chemistry ; Catalysis ; Catalytic activity ; Chemistry ; Electron transfer ; Electrons ; hydrogen ; Hydrogen - chemistry ; Hydrogen evolution ; Inverse ; Iron - chemistry ; Isotope effect ; isotope effects ; Isotopes - chemistry ; Kinetics ; metal nanoparticles ; Metal Nanoparticles - chemistry ; Molecular Structure ; NAD - chemistry ; Nanoparticles ; Photocatalysis ; photocatalysts ; Platinum - chemistry ; Rate constants</subject><ispartof>Chemistry : a European journal, 2011-02, Vol.17 (9), p.2777-2785</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</citedby><cites>FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201002399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201002399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21280108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotani, Hiroaki</creatorcontrib><creatorcontrib>Hanazaki, Ryo</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Yamada, Yusuke</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><title>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs.
Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).</description><subject>Acridines - chemistry</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen evolution</subject><subject>Inverse</subject><subject>Iron - chemistry</subject><subject>Isotope effect</subject><subject>isotope effects</subject><subject>Isotopes - chemistry</subject><subject>Kinetics</subject><subject>metal nanoparticles</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Structure</subject><subject>NAD - chemistry</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>photocatalysts</subject><subject>Platinum - chemistry</subject><subject>Rate constants</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v0zAYhy0EYqVw5YgscYBLiv_ETsxtKmWdtBakgtjNcpI3q0dqd7E7CB-Ez4tLtwpxgJNt-fk9r60fQs8pmVBC2Jt6DZsJI_s9V-oBGlHBaMYLKR6iEVF5kUnB1Ql6EsI1IURJzh-jE0ZZmTLlCP1c2R-QYeMavFqbLWTvYAuuARfxaR3trY0D9i1eQDQdXhrnt6aPtu4gYBPwfGh6fwUum936bhetd3hqEjmEGN6mUL02zobE43MX7NU6Bmxd9Pjj2kdf_yb3l_cafNQ8RY9a0wV4dreO0ef3s0_TeXbx4ex8enqR1XnOVSYK1VaVqASXjZQqr3glCFPpwDhRTEgigDFTt7JoG5FXeQMKqpIIAsDbmvIxenXwbnt_s4MQ9caGGrrOOPC7oEvBGWMlZYl8_U-SFkVJeFmkd43Ry7_Qa7_rXfpHoqSUtCjpfvTkQNW9D6GHVm97uzH9oCnR-z71vlt97DYFXtxpd9UGmiN-X2YC1AH4ZjsY_qPT0_ls8ac8O2RTXfD9mDX9Vy0LXgj9ZXmmL5dqdblQC53zXzkiwRg</recordid><startdate>20110225</startdate><enddate>20110225</enddate><creator>Kotani, Hiroaki</creator><creator>Hanazaki, Ryo</creator><creator>Ohkubo, Kei</creator><creator>Yamada, Yusuke</creator><creator>Fukuzumi, Shunichi</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20110225</creationdate><title>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</title><author>Kotani, Hiroaki ; Hanazaki, Ryo ; Ohkubo, Kei ; Yamada, Yusuke ; Fukuzumi, Shunichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-579fbb5b536d6694b3b50296d6230925605e22acf67fd54b4de9eb8050ee3fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acridines - chemistry</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen evolution</topic><topic>Inverse</topic><topic>Iron - chemistry</topic><topic>Isotope effect</topic><topic>isotope effects</topic><topic>Isotopes - chemistry</topic><topic>Kinetics</topic><topic>metal nanoparticles</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Structure</topic><topic>NAD - chemistry</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>photocatalysts</topic><topic>Platinum - chemistry</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotani, Hiroaki</creatorcontrib><creatorcontrib>Hanazaki, Ryo</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Yamada, Yusuke</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotani, Hiroaki</au><au>Hanazaki, Ryo</au><au>Ohkubo, Kei</au><au>Yamada, Yusuke</au><au>Fukuzumi, Shunichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2011-02-25</date><risdate>2011</risdate><volume>17</volume><issue>9</issue><spage>2777</spage><epage>2785</epage><pages>2777-2785</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the PtH bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs.
Rate of exchange: The catalytic activity of metal nanoparticles (MNPs) of different size and shape is studied based on the rate constant of electron transfer (ket) from one‐electron‐reduced species of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes) to MNPs. The linear dependence of ket on proton concentration and the inverse kinetic isotope effect (KIE) suggest that proton‐coupled electron transfer (PCET) from Acr.–Mes to PtNPs is the rate‐determining step for catalytic hydrogen evolution (see picture).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21280108</pmid><doi>10.1002/chem.201002399</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2011-02, Vol.17 (9), p.2777-2785 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_853222812 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Acridines - chemistry Catalysis Catalytic activity Chemistry Electron transfer Electrons hydrogen Hydrogen - chemistry Hydrogen evolution Inverse Iron - chemistry Isotope effect isotope effects Isotopes - chemistry Kinetics metal nanoparticles Metal Nanoparticles - chemistry Molecular Structure NAD - chemistry Nanoparticles Photocatalysis photocatalysts Platinum - chemistry Rate constants |
title | Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-%20and%20Shape-Dependent%20Activity%20of%20Metal%20Nanoparticles%20as%20Hydrogen-Evolution%20Catalysts:%20Mechanistic%20Insights%20into%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kotani,%20Hiroaki&rft.date=2011-02-25&rft.volume=17&rft.issue=9&rft.spage=2777&rft.epage=2785&rft.pages=2777-2785&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201002399&rft_dat=%3Cproquest_cross%3E853222812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766617811&rft_id=info:pmid/21280108&rfr_iscdi=true |