An integrated approach for fusion of environmental and human health data for disease surveillance
This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2011-02, Vol.30 (5), p.470-479 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 5 |
container_start_page | 470 |
container_title | Statistics in medicine |
container_volume | 30 |
creator | Burkom, Howard S. Ramac-Thomas, Liane Babin, Steven Holtry, Rekha Mnatsakanyan, Zaruhi Yund, Cynthia |
description | This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.3976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851478524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1032898174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</originalsourceid><addsrcrecordid>eNp90Utv1DAUhmELgehQkPgFyGJDN2l9fIntZanaobQFcV9aTnLCuCTO1E4K_fdk6FAkJFh58_iVrY-Qp8D2gTF-kEO_L6wu75EFMKsLxpW5TxaMa12UGtQOeZTzJWMAiuuHZIcDt0wysSD-MNIQR_ya_IgN9et1Gny9ou2QaDvlMEQ6tBTjdUhD7DGOvqM-NnQ19T7SFfpuXNHGj_7XjSZk9BlpntI1hq7zscbH5EHru4xPtucu-XRy_PHoVXH-dnl6dHhe1BJMWYjGaGyFVVhJaG3l0XDfKiU9KG1rycAyoThiVUOpSrTQ8NJAVfPGSA212CUvbrvzD64mzKPrQ65x8wgcpuyMAqmN4nKWe_-VwAQ31oDe0Od_0cthSnH-x9zjVgDI8k-vTkPOCVu3TqH36WYuuc0-bt7HbfaZ6bNtb6p6bO7g70FmUNyC76HDm3-G3IfTi21w60Me8ced9-mbK7XQyn15s3RnL9-fvVu-_uyk-AmkI6f4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852931146</pqid></control><display><type>article</type><title>An integrated approach for fusion of environmental and human health data for disease surveillance</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Burkom, Howard S. ; Ramac-Thomas, Liane ; Babin, Steven ; Holtry, Rekha ; Mnatsakanyan, Zaruhi ; Yund, Cynthia</creator><creatorcontrib>Burkom, Howard S. ; Ramac-Thomas, Liane ; Babin, Steven ; Holtry, Rekha ; Mnatsakanyan, Zaruhi ; Yund, Cynthia</creatorcontrib><description>This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3976</identifier><identifier>PMID: 21290403</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Bayes Theorem ; Bayesian analysis ; Bayesian network ; Biosurveillance - methods ; Computer Simulation ; data fusion ; Decision Support Techniques ; Disease - etiology ; Disease control ; Disease Outbreaks - statistics & numerical data ; drinking water surveillance ; Environmental health ; Environmental Monitoring - methods ; Epidemics ; Health Status Indicators ; Humans ; Integrated approach ; Marine Toxins - toxicity ; Oxocins - toxicity ; Population Surveillance - methods ; Predictive Value of Tests ; Prevalence ; Probability ; Public health ; public health surveillance ; Water Microbiology ; Water Pollution - adverse effects ; Water Pollution - analysis</subject><ispartof>Statistics in medicine, 2011-02, Vol.30 (5), p.470-479</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Feb 28, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</citedby><cites>FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.3976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.3976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21290403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkom, Howard S.</creatorcontrib><creatorcontrib>Ramac-Thomas, Liane</creatorcontrib><creatorcontrib>Babin, Steven</creatorcontrib><creatorcontrib>Holtry, Rekha</creatorcontrib><creatorcontrib>Mnatsakanyan, Zaruhi</creatorcontrib><creatorcontrib>Yund, Cynthia</creatorcontrib><title>An integrated approach for fusion of environmental and human health data for disease surveillance</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Biosurveillance - methods</subject><subject>Computer Simulation</subject><subject>data fusion</subject><subject>Decision Support Techniques</subject><subject>Disease - etiology</subject><subject>Disease control</subject><subject>Disease Outbreaks - statistics & numerical data</subject><subject>drinking water surveillance</subject><subject>Environmental health</subject><subject>Environmental Monitoring - methods</subject><subject>Epidemics</subject><subject>Health Status Indicators</subject><subject>Humans</subject><subject>Integrated approach</subject><subject>Marine Toxins - toxicity</subject><subject>Oxocins - toxicity</subject><subject>Population Surveillance - methods</subject><subject>Predictive Value of Tests</subject><subject>Prevalence</subject><subject>Probability</subject><subject>Public health</subject><subject>public health surveillance</subject><subject>Water Microbiology</subject><subject>Water Pollution - adverse effects</subject><subject>Water Pollution - analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90Utv1DAUhmELgehQkPgFyGJDN2l9fIntZanaobQFcV9aTnLCuCTO1E4K_fdk6FAkJFh58_iVrY-Qp8D2gTF-kEO_L6wu75EFMKsLxpW5TxaMa12UGtQOeZTzJWMAiuuHZIcDt0wysSD-MNIQR_ya_IgN9et1Gny9ou2QaDvlMEQ6tBTjdUhD7DGOvqM-NnQ19T7SFfpuXNHGj_7XjSZk9BlpntI1hq7zscbH5EHru4xPtucu-XRy_PHoVXH-dnl6dHhe1BJMWYjGaGyFVVhJaG3l0XDfKiU9KG1rycAyoThiVUOpSrTQ8NJAVfPGSA212CUvbrvzD64mzKPrQ65x8wgcpuyMAqmN4nKWe_-VwAQ31oDe0Od_0cthSnH-x9zjVgDI8k-vTkPOCVu3TqH36WYuuc0-bt7HbfaZ6bNtb6p6bO7g70FmUNyC76HDm3-G3IfTi21w60Me8ced9-mbK7XQyn15s3RnL9-fvVu-_uyk-AmkI6f4</recordid><startdate>20110228</startdate><enddate>20110228</enddate><creator>Burkom, Howard S.</creator><creator>Ramac-Thomas, Liane</creator><creator>Babin, Steven</creator><creator>Holtry, Rekha</creator><creator>Mnatsakanyan, Zaruhi</creator><creator>Yund, Cynthia</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7QH</scope><scope>7T2</scope><scope>7TV</scope><scope>7U2</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20110228</creationdate><title>An integrated approach for fusion of environmental and human health data for disease surveillance</title><author>Burkom, Howard S. ; Ramac-Thomas, Liane ; Babin, Steven ; Holtry, Rekha ; Mnatsakanyan, Zaruhi ; Yund, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Biosurveillance - methods</topic><topic>Computer Simulation</topic><topic>data fusion</topic><topic>Decision Support Techniques</topic><topic>Disease - etiology</topic><topic>Disease control</topic><topic>Disease Outbreaks - statistics & numerical data</topic><topic>drinking water surveillance</topic><topic>Environmental health</topic><topic>Environmental Monitoring - methods</topic><topic>Epidemics</topic><topic>Health Status Indicators</topic><topic>Humans</topic><topic>Integrated approach</topic><topic>Marine Toxins - toxicity</topic><topic>Oxocins - toxicity</topic><topic>Population Surveillance - methods</topic><topic>Predictive Value of Tests</topic><topic>Prevalence</topic><topic>Probability</topic><topic>Public health</topic><topic>public health surveillance</topic><topic>Water Microbiology</topic><topic>Water Pollution - adverse effects</topic><topic>Water Pollution - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkom, Howard S.</creatorcontrib><creatorcontrib>Ramac-Thomas, Liane</creatorcontrib><creatorcontrib>Babin, Steven</creatorcontrib><creatorcontrib>Holtry, Rekha</creatorcontrib><creatorcontrib>Mnatsakanyan, Zaruhi</creatorcontrib><creatorcontrib>Yund, Cynthia</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aqualine</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkom, Howard S.</au><au>Ramac-Thomas, Liane</au><au>Babin, Steven</au><au>Holtry, Rekha</au><au>Mnatsakanyan, Zaruhi</au><au>Yund, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated approach for fusion of environmental and human health data for disease surveillance</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2011-02-28</date><risdate>2011</risdate><volume>30</volume><issue>5</issue><spage>470</spage><epage>479</epage><pages>470-479</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>21290403</pmid><doi>10.1002/sim.3976</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2011-02, Vol.30 (5), p.470-479 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_851478524 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Algorithms Bayes Theorem Bayesian analysis Bayesian network Biosurveillance - methods Computer Simulation data fusion Decision Support Techniques Disease - etiology Disease control Disease Outbreaks - statistics & numerical data drinking water surveillance Environmental health Environmental Monitoring - methods Epidemics Health Status Indicators Humans Integrated approach Marine Toxins - toxicity Oxocins - toxicity Population Surveillance - methods Predictive Value of Tests Prevalence Probability Public health public health surveillance Water Microbiology Water Pollution - adverse effects Water Pollution - analysis |
title | An integrated approach for fusion of environmental and human health data for disease surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20approach%20for%20fusion%20of%20environmental%20and%20human%20health%20data%20for%20disease%20surveillance&rft.jtitle=Statistics%20in%20medicine&rft.au=Burkom,%20Howard%20S.&rft.date=2011-02-28&rft.volume=30&rft.issue=5&rft.spage=470&rft.epage=479&rft.pages=470-479&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.3976&rft_dat=%3Cproquest_cross%3E1032898174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852931146&rft_id=info:pmid/21290403&rfr_iscdi=true |