An integrated approach for fusion of environmental and human health data for disease surveillance

This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2011-02, Vol.30 (5), p.470-479
Hauptverfasser: Burkom, Howard S., Ramac-Thomas, Liane, Babin, Steven, Holtry, Rekha, Mnatsakanyan, Zaruhi, Yund, Cynthia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 5
container_start_page 470
container_title Statistics in medicine
container_volume 30
creator Burkom, Howard S.
Ramac-Thomas, Liane
Babin, Steven
Holtry, Rekha
Mnatsakanyan, Zaruhi
Yund, Cynthia
description This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.3976
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851478524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1032898174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</originalsourceid><addsrcrecordid>eNp90Utv1DAUhmELgehQkPgFyGJDN2l9fIntZanaobQFcV9aTnLCuCTO1E4K_fdk6FAkJFh58_iVrY-Qp8D2gTF-kEO_L6wu75EFMKsLxpW5TxaMa12UGtQOeZTzJWMAiuuHZIcDt0wysSD-MNIQR_ya_IgN9et1Gny9ou2QaDvlMEQ6tBTjdUhD7DGOvqM-NnQ19T7SFfpuXNHGj_7XjSZk9BlpntI1hq7zscbH5EHru4xPtucu-XRy_PHoVXH-dnl6dHhe1BJMWYjGaGyFVVhJaG3l0XDfKiU9KG1rycAyoThiVUOpSrTQ8NJAVfPGSA212CUvbrvzD64mzKPrQ65x8wgcpuyMAqmN4nKWe_-VwAQ31oDe0Od_0cthSnH-x9zjVgDI8k-vTkPOCVu3TqH36WYuuc0-bt7HbfaZ6bNtb6p6bO7g70FmUNyC76HDm3-G3IfTi21w60Me8ced9-mbK7XQyn15s3RnL9-fvVu-_uyk-AmkI6f4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852931146</pqid></control><display><type>article</type><title>An integrated approach for fusion of environmental and human health data for disease surveillance</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Burkom, Howard S. ; Ramac-Thomas, Liane ; Babin, Steven ; Holtry, Rekha ; Mnatsakanyan, Zaruhi ; Yund, Cynthia</creator><creatorcontrib>Burkom, Howard S. ; Ramac-Thomas, Liane ; Babin, Steven ; Holtry, Rekha ; Mnatsakanyan, Zaruhi ; Yund, Cynthia</creatorcontrib><description>This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3976</identifier><identifier>PMID: 21290403</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Bayes Theorem ; Bayesian analysis ; Bayesian network ; Biosurveillance - methods ; Computer Simulation ; data fusion ; Decision Support Techniques ; Disease - etiology ; Disease control ; Disease Outbreaks - statistics &amp; numerical data ; drinking water surveillance ; Environmental health ; Environmental Monitoring - methods ; Epidemics ; Health Status Indicators ; Humans ; Integrated approach ; Marine Toxins - toxicity ; Oxocins - toxicity ; Population Surveillance - methods ; Predictive Value of Tests ; Prevalence ; Probability ; Public health ; public health surveillance ; Water Microbiology ; Water Pollution - adverse effects ; Water Pollution - analysis</subject><ispartof>Statistics in medicine, 2011-02, Vol.30 (5), p.470-479</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Feb 28, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</citedby><cites>FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.3976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.3976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21290403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkom, Howard S.</creatorcontrib><creatorcontrib>Ramac-Thomas, Liane</creatorcontrib><creatorcontrib>Babin, Steven</creatorcontrib><creatorcontrib>Holtry, Rekha</creatorcontrib><creatorcontrib>Mnatsakanyan, Zaruhi</creatorcontrib><creatorcontrib>Yund, Cynthia</creatorcontrib><title>An integrated approach for fusion of environmental and human health data for disease surveillance</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Biosurveillance - methods</subject><subject>Computer Simulation</subject><subject>data fusion</subject><subject>Decision Support Techniques</subject><subject>Disease - etiology</subject><subject>Disease control</subject><subject>Disease Outbreaks - statistics &amp; numerical data</subject><subject>drinking water surveillance</subject><subject>Environmental health</subject><subject>Environmental Monitoring - methods</subject><subject>Epidemics</subject><subject>Health Status Indicators</subject><subject>Humans</subject><subject>Integrated approach</subject><subject>Marine Toxins - toxicity</subject><subject>Oxocins - toxicity</subject><subject>Population Surveillance - methods</subject><subject>Predictive Value of Tests</subject><subject>Prevalence</subject><subject>Probability</subject><subject>Public health</subject><subject>public health surveillance</subject><subject>Water Microbiology</subject><subject>Water Pollution - adverse effects</subject><subject>Water Pollution - analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90Utv1DAUhmELgehQkPgFyGJDN2l9fIntZanaobQFcV9aTnLCuCTO1E4K_fdk6FAkJFh58_iVrY-Qp8D2gTF-kEO_L6wu75EFMKsLxpW5TxaMa12UGtQOeZTzJWMAiuuHZIcDt0wysSD-MNIQR_ya_IgN9et1Gny9ou2QaDvlMEQ6tBTjdUhD7DGOvqM-NnQ19T7SFfpuXNHGj_7XjSZk9BlpntI1hq7zscbH5EHru4xPtucu-XRy_PHoVXH-dnl6dHhe1BJMWYjGaGyFVVhJaG3l0XDfKiU9KG1rycAyoThiVUOpSrTQ8NJAVfPGSA212CUvbrvzD64mzKPrQ65x8wgcpuyMAqmN4nKWe_-VwAQ31oDe0Od_0cthSnH-x9zjVgDI8k-vTkPOCVu3TqH36WYuuc0-bt7HbfaZ6bNtb6p6bO7g70FmUNyC76HDm3-G3IfTi21w60Me8ced9-mbK7XQyn15s3RnL9-fvVu-_uyk-AmkI6f4</recordid><startdate>20110228</startdate><enddate>20110228</enddate><creator>Burkom, Howard S.</creator><creator>Ramac-Thomas, Liane</creator><creator>Babin, Steven</creator><creator>Holtry, Rekha</creator><creator>Mnatsakanyan, Zaruhi</creator><creator>Yund, Cynthia</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7QH</scope><scope>7T2</scope><scope>7TV</scope><scope>7U2</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20110228</creationdate><title>An integrated approach for fusion of environmental and human health data for disease surveillance</title><author>Burkom, Howard S. ; Ramac-Thomas, Liane ; Babin, Steven ; Holtry, Rekha ; Mnatsakanyan, Zaruhi ; Yund, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4186-3d87ef395eb41f9bae82af554a1579c40190352eebc1656e91d2681bc2d8471c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Biosurveillance - methods</topic><topic>Computer Simulation</topic><topic>data fusion</topic><topic>Decision Support Techniques</topic><topic>Disease - etiology</topic><topic>Disease control</topic><topic>Disease Outbreaks - statistics &amp; numerical data</topic><topic>drinking water surveillance</topic><topic>Environmental health</topic><topic>Environmental Monitoring - methods</topic><topic>Epidemics</topic><topic>Health Status Indicators</topic><topic>Humans</topic><topic>Integrated approach</topic><topic>Marine Toxins - toxicity</topic><topic>Oxocins - toxicity</topic><topic>Population Surveillance - methods</topic><topic>Predictive Value of Tests</topic><topic>Prevalence</topic><topic>Probability</topic><topic>Public health</topic><topic>public health surveillance</topic><topic>Water Microbiology</topic><topic>Water Pollution - adverse effects</topic><topic>Water Pollution - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkom, Howard S.</creatorcontrib><creatorcontrib>Ramac-Thomas, Liane</creatorcontrib><creatorcontrib>Babin, Steven</creatorcontrib><creatorcontrib>Holtry, Rekha</creatorcontrib><creatorcontrib>Mnatsakanyan, Zaruhi</creatorcontrib><creatorcontrib>Yund, Cynthia</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aqualine</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkom, Howard S.</au><au>Ramac-Thomas, Liane</au><au>Babin, Steven</au><au>Holtry, Rekha</au><au>Mnatsakanyan, Zaruhi</au><au>Yund, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated approach for fusion of environmental and human health data for disease surveillance</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2011-02-28</date><risdate>2011</risdate><volume>30</volume><issue>5</issue><spage>470</spage><epage>479</epage><pages>470-479</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>This paper describes the problem of public health monitoring for waterborne disease outbreaks using disparate evidence from health surveillance data streams and environmental sensors. We present a combined monitoring approach along with examples from a recent project at the Johns Hopkins University Applied Physics Laboratory in collaboration with the U.S. Environmental Protection Agency. The project objective was to build a module for the Electronic Surveillance System for the Early Notification of Community‐based Epidemics (ESSENCE) to include water quality data with health indicator data for the early detection of waterborne disease outbreaks. The basic question in the fused surveillance application is ‘What is the likelihood of the public health threat of interest given recent information from available sources of evidence?’ For a scientific perspective, we formulate this question in terms of the estimation of positive predictive value customary in classical epidemiology, and we present a solution framework using Bayesian Networks (BN). An overview of the BN approach presents advantages, disadvantages, and required adaptations needed for a fused surveillance capability that is scalable and robust relative to the practical data environment. In the BN project, we built a top‐level health/water‐quality fusion BN informed by separate waterborne‐disease‐related networks for the detection of water contamination and human health effects. Elements of the art of developing networks appropriate to this environment are discussed with examples. Results of applying these networks to a simulated contamination scenario are presented. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>21290403</pmid><doi>10.1002/sim.3976</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2011-02, Vol.30 (5), p.470-479
issn 0277-6715
1097-0258
1097-0258
language eng
recordid cdi_proquest_miscellaneous_851478524
source MEDLINE; Wiley Online Library All Journals
subjects Algorithms
Bayes Theorem
Bayesian analysis
Bayesian network
Biosurveillance - methods
Computer Simulation
data fusion
Decision Support Techniques
Disease - etiology
Disease control
Disease Outbreaks - statistics & numerical data
drinking water surveillance
Environmental health
Environmental Monitoring - methods
Epidemics
Health Status Indicators
Humans
Integrated approach
Marine Toxins - toxicity
Oxocins - toxicity
Population Surveillance - methods
Predictive Value of Tests
Prevalence
Probability
Public health
public health surveillance
Water Microbiology
Water Pollution - adverse effects
Water Pollution - analysis
title An integrated approach for fusion of environmental and human health data for disease surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20approach%20for%20fusion%20of%20environmental%20and%20human%20health%20data%20for%20disease%20surveillance&rft.jtitle=Statistics%20in%20medicine&rft.au=Burkom,%20Howard%20S.&rft.date=2011-02-28&rft.volume=30&rft.issue=5&rft.spage=470&rft.epage=479&rft.pages=470-479&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.3976&rft_dat=%3Cproquest_cross%3E1032898174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852931146&rft_id=info:pmid/21290403&rfr_iscdi=true