Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve

Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical chemistry 2011, Vol.153 (2), p.159-167
Hauptverfasser: Villagran Vargas, Edgar, Ludu, Andrei, Hustert, Reinhold, Gumrich, Peter, Jackson, Andrew D., Heimburg, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 2
container_start_page 159
container_title Biophysical chemistry
container_volume 153
creator Villagran Vargas, Edgar
Ludu, Andrei
Hustert, Reinhold
Gumrich, Peter
Jackson, Andrew D.
Heimburg, Thomas
description Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust ( Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions. [Display omitted] ► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.
doi_str_mv 10.1016/j.bpc.2010.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851466411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301462210002619</els_id><sourcerecordid>822903746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2qVVmgP6AXlFtPWWbsJLbFqUItICHRQzlbjjNpvcrGi50g8e_rEOBYfLGt-d7T6D3GviJsEbA5323bg9tyWP64BcAPbINKirLiAB_ZBgRgWTWcH7HjlHaQjwL4zI44opSAcsP-_KLoQ-ddkcIwTz6MqbBjV0Tqo3VTiE_F4ZlIhR-L6S8tnJ_C83uZ9iEWI8VHWnULMQQ3p6noaR-iHdbpKfvU2yHRl5f7hN3__PH78rq8vbu6ufx-WzqhqqnUmvNG9aBl1dRacmF53-retlgrkg6sq7XqK9FpUtrKSgjk0FilWmUFyFqcsG-r7yGGh5nSZPY-ORoGO1KYk1E1Vk1TIb5Pcq5B5D0yiSvpYkgpJ2MO0e9tfDIIZinC7EwuwixFGESTi8iasxf3ud1T96Z4TT4DFytAOY1HT9Ek52l01PlIbjJd8P-x_wc8vph8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822903746</pqid></control><display><type>article</type><title>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Villagran Vargas, Edgar ; Ludu, Andrei ; Hustert, Reinhold ; Gumrich, Peter ; Jackson, Andrew D. ; Heimburg, Thomas</creator><creatorcontrib>Villagran Vargas, Edgar ; Ludu, Andrei ; Hustert, Reinhold ; Gumrich, Peter ; Jackson, Andrew D. ; Heimburg, Thomas</creatorcontrib><description>Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust ( Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions. [Display omitted] ► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.</description><identifier>ISSN: 0301-4622</identifier><identifier>EISSN: 1873-4200</identifier><identifier>DOI: 10.1016/j.bpc.2010.11.001</identifier><identifier>PMID: 21177017</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action potential ; Action Potentials - physiology ; Animals ; Cell Line - physiology ; Conservation ; Dislocation ; Female ; Femoral Nerve - physiology ; Femur ; Heat ; Hyperpolarization ; Locusta migratoria ; Locusta migratoria - physiology ; Male ; Mathematical models ; Melting ; Membrane elasticity ; Models, Neurological ; Nerves ; Neurons ; Neurons - physiology ; Periodicity ; Refractory Period, Electrophysiological - physiology ; Solitons ; Sound propagation ; Thermodynamics ; Waves</subject><ispartof>Biophysical chemistry, 2011, Vol.153 (2), p.159-167</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</citedby><cites>FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301462210002619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21177017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villagran Vargas, Edgar</creatorcontrib><creatorcontrib>Ludu, Andrei</creatorcontrib><creatorcontrib>Hustert, Reinhold</creatorcontrib><creatorcontrib>Gumrich, Peter</creatorcontrib><creatorcontrib>Jackson, Andrew D.</creatorcontrib><creatorcontrib>Heimburg, Thomas</creatorcontrib><title>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</title><title>Biophysical chemistry</title><addtitle>Biophys Chem</addtitle><description>Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust ( Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions. [Display omitted] ► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.</description><subject>Action potential</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Cell Line - physiology</subject><subject>Conservation</subject><subject>Dislocation</subject><subject>Female</subject><subject>Femoral Nerve - physiology</subject><subject>Femur</subject><subject>Heat</subject><subject>Hyperpolarization</subject><subject>Locusta migratoria</subject><subject>Locusta migratoria - physiology</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Membrane elasticity</subject><subject>Models, Neurological</subject><subject>Nerves</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Periodicity</subject><subject>Refractory Period, Electrophysiological - physiology</subject><subject>Solitons</subject><subject>Sound propagation</subject><subject>Thermodynamics</subject><subject>Waves</subject><issn>0301-4622</issn><issn>1873-4200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQha2qVVmgP6AXlFtPWWbsJLbFqUItICHRQzlbjjNpvcrGi50g8e_rEOBYfLGt-d7T6D3GviJsEbA5323bg9tyWP64BcAPbINKirLiAB_ZBgRgWTWcH7HjlHaQjwL4zI44opSAcsP-_KLoQ-ddkcIwTz6MqbBjV0Tqo3VTiE_F4ZlIhR-L6S8tnJ_C83uZ9iEWI8VHWnULMQQ3p6noaR-iHdbpKfvU2yHRl5f7hN3__PH78rq8vbu6ufx-WzqhqqnUmvNG9aBl1dRacmF53-retlgrkg6sq7XqK9FpUtrKSgjk0FilWmUFyFqcsG-r7yGGh5nSZPY-ORoGO1KYk1E1Vk1TIb5Pcq5B5D0yiSvpYkgpJ2MO0e9tfDIIZinC7EwuwixFGESTi8iasxf3ud1T96Z4TT4DFytAOY1HT9Ek52l01PlIbjJd8P-x_wc8vph8</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Villagran Vargas, Edgar</creator><creator>Ludu, Andrei</creator><creator>Hustert, Reinhold</creator><creator>Gumrich, Peter</creator><creator>Jackson, Andrew D.</creator><creator>Heimburg, Thomas</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope><scope>7TK</scope></search><sort><creationdate>2011</creationdate><title>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</title><author>Villagran Vargas, Edgar ; Ludu, Andrei ; Hustert, Reinhold ; Gumrich, Peter ; Jackson, Andrew D. ; Heimburg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action potential</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Cell Line - physiology</topic><topic>Conservation</topic><topic>Dislocation</topic><topic>Female</topic><topic>Femoral Nerve - physiology</topic><topic>Femur</topic><topic>Heat</topic><topic>Hyperpolarization</topic><topic>Locusta migratoria</topic><topic>Locusta migratoria - physiology</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Membrane elasticity</topic><topic>Models, Neurological</topic><topic>Nerves</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Periodicity</topic><topic>Refractory Period, Electrophysiological - physiology</topic><topic>Solitons</topic><topic>Sound propagation</topic><topic>Thermodynamics</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villagran Vargas, Edgar</creatorcontrib><creatorcontrib>Ludu, Andrei</creatorcontrib><creatorcontrib>Hustert, Reinhold</creatorcontrib><creatorcontrib>Gumrich, Peter</creatorcontrib><creatorcontrib>Jackson, Andrew D.</creatorcontrib><creatorcontrib>Heimburg, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><jtitle>Biophysical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villagran Vargas, Edgar</au><au>Ludu, Andrei</au><au>Hustert, Reinhold</au><au>Gumrich, Peter</au><au>Jackson, Andrew D.</au><au>Heimburg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</atitle><jtitle>Biophysical chemistry</jtitle><addtitle>Biophys Chem</addtitle><date>2011</date><risdate>2011</risdate><volume>153</volume><issue>2</issue><spage>159</spage><epage>167</epage><pages>159-167</pages><issn>0301-4622</issn><eissn>1873-4200</eissn><abstract>Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust ( Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions. [Display omitted] ► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21177017</pmid><doi>10.1016/j.bpc.2010.11.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4622
ispartof Biophysical chemistry, 2011, Vol.153 (2), p.159-167
issn 0301-4622
1873-4200
language eng
recordid cdi_proquest_miscellaneous_851466411
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action potential
Action Potentials - physiology
Animals
Cell Line - physiology
Conservation
Dislocation
Female
Femoral Nerve - physiology
Femur
Heat
Hyperpolarization
Locusta migratoria
Locusta migratoria - physiology
Male
Mathematical models
Melting
Membrane elasticity
Models, Neurological
Nerves
Neurons
Neurons - physiology
Periodicity
Refractory Period, Electrophysiological - physiology
Solitons
Sound propagation
Thermodynamics
Waves
title Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20solutions%20and%20refractory%20periods%20in%20the%20soliton%20theory%20for%20nerves%20and%20the%20locust%20femoral%20nerve&rft.jtitle=Biophysical%20chemistry&rft.au=Villagran%20Vargas,%20Edgar&rft.date=2011&rft.volume=153&rft.issue=2&rft.spage=159&rft.epage=167&rft.pages=159-167&rft.issn=0301-4622&rft.eissn=1873-4200&rft_id=info:doi/10.1016/j.bpc.2010.11.001&rft_dat=%3Cproquest_cross%3E822903746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822903746&rft_id=info:pmid/21177017&rft_els_id=S0301462210002619&rfr_iscdi=true