Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve
Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generat...
Gespeichert in:
Veröffentlicht in: | Biophysical chemistry 2011, Vol.153 (2), p.159-167 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 2 |
container_start_page | 159 |
container_title | Biophysical chemistry |
container_volume | 153 |
creator | Villagran Vargas, Edgar Ludu, Andrei Hustert, Reinhold Gumrich, Peter Jackson, Andrew D. Heimburg, Thomas |
description | Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (
Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.
[Display omitted]
► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order. |
doi_str_mv | 10.1016/j.bpc.2010.11.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851466411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301462210002619</els_id><sourcerecordid>822903746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2qVVmgP6AXlFtPWWbsJLbFqUItICHRQzlbjjNpvcrGi50g8e_rEOBYfLGt-d7T6D3GviJsEbA5323bg9tyWP64BcAPbINKirLiAB_ZBgRgWTWcH7HjlHaQjwL4zI44opSAcsP-_KLoQ-ddkcIwTz6MqbBjV0Tqo3VTiE_F4ZlIhR-L6S8tnJ_C83uZ9iEWI8VHWnULMQQ3p6noaR-iHdbpKfvU2yHRl5f7hN3__PH78rq8vbu6ufx-WzqhqqnUmvNG9aBl1dRacmF53-retlgrkg6sq7XqK9FpUtrKSgjk0FilWmUFyFqcsG-r7yGGh5nSZPY-ORoGO1KYk1E1Vk1TIb5Pcq5B5D0yiSvpYkgpJ2MO0e9tfDIIZinC7EwuwixFGESTi8iasxf3ud1T96Z4TT4DFytAOY1HT9Ek52l01PlIbjJd8P-x_wc8vph8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822903746</pqid></control><display><type>article</type><title>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Villagran Vargas, Edgar ; Ludu, Andrei ; Hustert, Reinhold ; Gumrich, Peter ; Jackson, Andrew D. ; Heimburg, Thomas</creator><creatorcontrib>Villagran Vargas, Edgar ; Ludu, Andrei ; Hustert, Reinhold ; Gumrich, Peter ; Jackson, Andrew D. ; Heimburg, Thomas</creatorcontrib><description>Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (
Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.
[Display omitted]
► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.</description><identifier>ISSN: 0301-4622</identifier><identifier>EISSN: 1873-4200</identifier><identifier>DOI: 10.1016/j.bpc.2010.11.001</identifier><identifier>PMID: 21177017</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action potential ; Action Potentials - physiology ; Animals ; Cell Line - physiology ; Conservation ; Dislocation ; Female ; Femoral Nerve - physiology ; Femur ; Heat ; Hyperpolarization ; Locusta migratoria ; Locusta migratoria - physiology ; Male ; Mathematical models ; Melting ; Membrane elasticity ; Models, Neurological ; Nerves ; Neurons ; Neurons - physiology ; Periodicity ; Refractory Period, Electrophysiological - physiology ; Solitons ; Sound propagation ; Thermodynamics ; Waves</subject><ispartof>Biophysical chemistry, 2011, Vol.153 (2), p.159-167</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</citedby><cites>FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301462210002619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21177017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villagran Vargas, Edgar</creatorcontrib><creatorcontrib>Ludu, Andrei</creatorcontrib><creatorcontrib>Hustert, Reinhold</creatorcontrib><creatorcontrib>Gumrich, Peter</creatorcontrib><creatorcontrib>Jackson, Andrew D.</creatorcontrib><creatorcontrib>Heimburg, Thomas</creatorcontrib><title>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</title><title>Biophysical chemistry</title><addtitle>Biophys Chem</addtitle><description>Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (
Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.
[Display omitted]
► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.</description><subject>Action potential</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Cell Line - physiology</subject><subject>Conservation</subject><subject>Dislocation</subject><subject>Female</subject><subject>Femoral Nerve - physiology</subject><subject>Femur</subject><subject>Heat</subject><subject>Hyperpolarization</subject><subject>Locusta migratoria</subject><subject>Locusta migratoria - physiology</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Membrane elasticity</subject><subject>Models, Neurological</subject><subject>Nerves</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Periodicity</subject><subject>Refractory Period, Electrophysiological - physiology</subject><subject>Solitons</subject><subject>Sound propagation</subject><subject>Thermodynamics</subject><subject>Waves</subject><issn>0301-4622</issn><issn>1873-4200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQha2qVVmgP6AXlFtPWWbsJLbFqUItICHRQzlbjjNpvcrGi50g8e_rEOBYfLGt-d7T6D3GviJsEbA5323bg9tyWP64BcAPbINKirLiAB_ZBgRgWTWcH7HjlHaQjwL4zI44opSAcsP-_KLoQ-ddkcIwTz6MqbBjV0Tqo3VTiE_F4ZlIhR-L6S8tnJ_C83uZ9iEWI8VHWnULMQQ3p6noaR-iHdbpKfvU2yHRl5f7hN3__PH78rq8vbu6ufx-WzqhqqnUmvNG9aBl1dRacmF53-retlgrkg6sq7XqK9FpUtrKSgjk0FilWmUFyFqcsG-r7yGGh5nSZPY-ORoGO1KYk1E1Vk1TIb5Pcq5B5D0yiSvpYkgpJ2MO0e9tfDIIZinC7EwuwixFGESTi8iasxf3ud1T96Z4TT4DFytAOY1HT9Ek52l01PlIbjJd8P-x_wc8vph8</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Villagran Vargas, Edgar</creator><creator>Ludu, Andrei</creator><creator>Hustert, Reinhold</creator><creator>Gumrich, Peter</creator><creator>Jackson, Andrew D.</creator><creator>Heimburg, Thomas</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope><scope>7TK</scope></search><sort><creationdate>2011</creationdate><title>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</title><author>Villagran Vargas, Edgar ; Ludu, Andrei ; Hustert, Reinhold ; Gumrich, Peter ; Jackson, Andrew D. ; Heimburg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-992268f0974659723a2fb9fab158e7c0ac598f43d9e89a74331206a88b8a30753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action potential</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Cell Line - physiology</topic><topic>Conservation</topic><topic>Dislocation</topic><topic>Female</topic><topic>Femoral Nerve - physiology</topic><topic>Femur</topic><topic>Heat</topic><topic>Hyperpolarization</topic><topic>Locusta migratoria</topic><topic>Locusta migratoria - physiology</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Membrane elasticity</topic><topic>Models, Neurological</topic><topic>Nerves</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Periodicity</topic><topic>Refractory Period, Electrophysiological - physiology</topic><topic>Solitons</topic><topic>Sound propagation</topic><topic>Thermodynamics</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villagran Vargas, Edgar</creatorcontrib><creatorcontrib>Ludu, Andrei</creatorcontrib><creatorcontrib>Hustert, Reinhold</creatorcontrib><creatorcontrib>Gumrich, Peter</creatorcontrib><creatorcontrib>Jackson, Andrew D.</creatorcontrib><creatorcontrib>Heimburg, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><jtitle>Biophysical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villagran Vargas, Edgar</au><au>Ludu, Andrei</au><au>Hustert, Reinhold</au><au>Gumrich, Peter</au><au>Jackson, Andrew D.</au><au>Heimburg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve</atitle><jtitle>Biophysical chemistry</jtitle><addtitle>Biophys Chem</addtitle><date>2011</date><risdate>2011</risdate><volume>153</volume><issue>2</issue><spage>159</spage><epage>167</epage><pages>159-167</pages><issn>0301-4622</issn><eissn>1873-4200</eissn><abstract>Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (
Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.
[Display omitted]
► Close to melting transitions in lipid membranes mechanical pulses can propagate. ► Pulses display minimal distances of several pulse widths due to mass conservation. ► During pulses one finds forces, thickness changes and no heat dissipation. ► The action potentials in nerves share the above features. ► Locust nerves display doublets of pulses with distances of the above order.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21177017</pmid><doi>10.1016/j.bpc.2010.11.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4622 |
ispartof | Biophysical chemistry, 2011, Vol.153 (2), p.159-167 |
issn | 0301-4622 1873-4200 |
language | eng |
recordid | cdi_proquest_miscellaneous_851466411 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action potential Action Potentials - physiology Animals Cell Line - physiology Conservation Dislocation Female Femoral Nerve - physiology Femur Heat Hyperpolarization Locusta migratoria Locusta migratoria - physiology Male Mathematical models Melting Membrane elasticity Models, Neurological Nerves Neurons Neurons - physiology Periodicity Refractory Period, Electrophysiological - physiology Solitons Sound propagation Thermodynamics Waves |
title | Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20solutions%20and%20refractory%20periods%20in%20the%20soliton%20theory%20for%20nerves%20and%20the%20locust%20femoral%20nerve&rft.jtitle=Biophysical%20chemistry&rft.au=Villagran%20Vargas,%20Edgar&rft.date=2011&rft.volume=153&rft.issue=2&rft.spage=159&rft.epage=167&rft.pages=159-167&rft.issn=0301-4622&rft.eissn=1873-4200&rft_id=info:doi/10.1016/j.bpc.2010.11.001&rft_dat=%3Cproquest_cross%3E822903746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822903746&rft_id=info:pmid/21177017&rft_els_id=S0301462210002619&rfr_iscdi=true |