Detection and differentiation of live and heat‐treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT‐IR) spectroscopy
Aims: To evaluate Fourier transform infrared (FT‐IR) techniques for detecting, quantifying, and differentiating viable and heat‐treated cells of Salmonella enterica serovars from chicken breast. Methods and Results: Salmonella enterica serovars were captured from inoculated chicken breast by filtrat...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2010-12, Vol.109 (6), p.2019-2031 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2031 |
---|---|
container_issue | 6 |
container_start_page | 2019 |
container_title | Journal of applied microbiology |
container_volume | 109 |
creator | Davis, R Burgula, Y Deering, A Irudayaraj, J Reuhs, B.L Mauer, L.J |
description | Aims: To evaluate Fourier transform infrared (FT‐IR) techniques for detecting, quantifying, and differentiating viable and heat‐treated cells of Salmonella enterica serovars from chicken breast. Methods and Results: Salmonella enterica serovars were captured from inoculated chicken breast by filtration and immunomagnetic separation (IMS) prior to spectral collection using an FT‐IR spectrometer and IR microscopy. The detection limits, based on amide II peak area (1589 to 1493 cm⁻¹), for the Filtration‐FT‐IR and IMS‐FT‐IR methods were 10⁶ and 10⁴ CFU g⁻¹, respectively. The bacteria were detectable after 6 h of culture enrichment during a sensitivity experiment with lower initial inoculum of 10¹ CFU g⁻¹. Canonical variate analysis differentiated experimental from control spectra at a level of 10³ CFU g⁻¹. Partial least squares models were established for the quantification of Salm. enterica from chicken breast using Filtration‐FT‐IR (R² ≥ 0·95, RMSEC ≤ 0·62) and IMS‐FT‐IR (R² ≥ 0·80, RMSEC ≤ 1·61) methods. Filtration‐FT‐IR was also used to detect and quantify live Salm. enterica in the presence of heat‐treated cells with R² = 0·996, and this approach was comparable to the results of a commercial stain (BacLight™; R² = 0·998). Discriminant and canonical variate analyses of the spectra differentiated live and dead cells of different serovars of Salm. enterica. Conclusions: FT‐IR analysis coupled with separation methods is useful for the rapid detection and differentiation of Salm. enterica separated from chicken. Significance and Impact of the Study: FT‐IR‐based methods are faster than traditional microbiological methods and can be used for the detection of live and dead bacteria from complex foods. |
doi_str_mv | 10.1111/j.1365-2672.2010.04832.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_851465180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>764539873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4252-128daed26b7e9176823c8318f7f1beb30b7d3101c8530e4f083454721ead41453</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhVsIRELgCuAdsOjBv23PgkUUGAgKQiLJ2nK7y4mHHnuwu0NmxxE4CKfiJLh7QrZ4U6V63yvbelWFCF6Qct6sF4Q1oqaNpAuKyxRzxeji9kF1eC88nHteCyzpQfUk5zXGhGHRPK4OKJZMcU4Pq9_vYAA7-BiQCR3qvHOQIAzezLPoUO9vYNauwQx_fv4aUqnQoXPTb2KAvjeo8JC8NShDijcmZeRDtGM_czEMEdlrb79BQG0x5wGN2YcrtIpj8pDQkEzILqZNsblkUjG9Wl2Uq06_vkZ5W56XYrZxu3taPXKmz_Dsrh5Vl6v3Fycf67MvH05Pjs9qy6mgNaGqM9DRppWwJLJRlFnFiHLSkRZahlvZMYKJVYJh4A4rxgWXlIDpOOGCHVUv93u3KX4fIQ9647OdvhogjlkrQXgjiML_JWVT1i2VZIV8fkeO7QY6vU1-Y9JO_4uiAG_3wA_fw-5eJ1hPkeu1npLVU7J6ilzPketb_en489QV_4u935mozVXyWV-e0ylysiSikYL9BdxCrLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>764539873</pqid></control><display><type>article</type><title>Detection and differentiation of live and heat‐treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT‐IR) spectroscopy</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Davis, R ; Burgula, Y ; Deering, A ; Irudayaraj, J ; Reuhs, B.L ; Mauer, L.J</creator><creatorcontrib>Davis, R ; Burgula, Y ; Deering, A ; Irudayaraj, J ; Reuhs, B.L ; Mauer, L.J</creatorcontrib><description>Aims: To evaluate Fourier transform infrared (FT‐IR) techniques for detecting, quantifying, and differentiating viable and heat‐treated cells of Salmonella enterica serovars from chicken breast. Methods and Results: Salmonella enterica serovars were captured from inoculated chicken breast by filtration and immunomagnetic separation (IMS) prior to spectral collection using an FT‐IR spectrometer and IR microscopy. The detection limits, based on amide II peak area (1589 to 1493 cm⁻¹), for the Filtration‐FT‐IR and IMS‐FT‐IR methods were 10⁶ and 10⁴ CFU g⁻¹, respectively. The bacteria were detectable after 6 h of culture enrichment during a sensitivity experiment with lower initial inoculum of 10¹ CFU g⁻¹. Canonical variate analysis differentiated experimental from control spectra at a level of 10³ CFU g⁻¹. Partial least squares models were established for the quantification of Salm. enterica from chicken breast using Filtration‐FT‐IR (R² ≥ 0·95, RMSEC ≤ 0·62) and IMS‐FT‐IR (R² ≥ 0·80, RMSEC ≤ 1·61) methods. Filtration‐FT‐IR was also used to detect and quantify live Salm. enterica in the presence of heat‐treated cells with R² = 0·996, and this approach was comparable to the results of a commercial stain (BacLight™; R² = 0·998). Discriminant and canonical variate analyses of the spectra differentiated live and dead cells of different serovars of Salm. enterica. Conclusions: FT‐IR analysis coupled with separation methods is useful for the rapid detection and differentiation of Salm. enterica separated from chicken. Significance and Impact of the Study: FT‐IR‐based methods are faster than traditional microbiological methods and can be used for the detection of live and dead bacteria from complex foods.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2010.04832.x</identifier><identifier>PMID: 20738442</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; chicken breast ; Chickens - microbiology ; filtration ; Food Contamination ; Food Microbiology ; Fourier Analysis ; FT‐IR ; Hot Temperature ; live dead differentiation ; Meat - microbiology ; pathogen detection ; Salmonella enterica ; Salmonella enterica - isolation & purification ; Spectroscopy, Fourier Transform Infrared - methods</subject><ispartof>Journal of applied microbiology, 2010-12, Vol.109 (6), p.2019-2031</ispartof><rights>2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology</rights><rights>2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4252-128daed26b7e9176823c8318f7f1beb30b7d3101c8530e4f083454721ead41453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2672.2010.04832.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2672.2010.04832.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20738442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, R</creatorcontrib><creatorcontrib>Burgula, Y</creatorcontrib><creatorcontrib>Deering, A</creatorcontrib><creatorcontrib>Irudayaraj, J</creatorcontrib><creatorcontrib>Reuhs, B.L</creatorcontrib><creatorcontrib>Mauer, L.J</creatorcontrib><title>Detection and differentiation of live and heat‐treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT‐IR) spectroscopy</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims: To evaluate Fourier transform infrared (FT‐IR) techniques for detecting, quantifying, and differentiating viable and heat‐treated cells of Salmonella enterica serovars from chicken breast. Methods and Results: Salmonella enterica serovars were captured from inoculated chicken breast by filtration and immunomagnetic separation (IMS) prior to spectral collection using an FT‐IR spectrometer and IR microscopy. The detection limits, based on amide II peak area (1589 to 1493 cm⁻¹), for the Filtration‐FT‐IR and IMS‐FT‐IR methods were 10⁶ and 10⁴ CFU g⁻¹, respectively. The bacteria were detectable after 6 h of culture enrichment during a sensitivity experiment with lower initial inoculum of 10¹ CFU g⁻¹. Canonical variate analysis differentiated experimental from control spectra at a level of 10³ CFU g⁻¹. Partial least squares models were established for the quantification of Salm. enterica from chicken breast using Filtration‐FT‐IR (R² ≥ 0·95, RMSEC ≤ 0·62) and IMS‐FT‐IR (R² ≥ 0·80, RMSEC ≤ 1·61) methods. Filtration‐FT‐IR was also used to detect and quantify live Salm. enterica in the presence of heat‐treated cells with R² = 0·996, and this approach was comparable to the results of a commercial stain (BacLight™; R² = 0·998). Discriminant and canonical variate analyses of the spectra differentiated live and dead cells of different serovars of Salm. enterica. Conclusions: FT‐IR analysis coupled with separation methods is useful for the rapid detection and differentiation of Salm. enterica separated from chicken. Significance and Impact of the Study: FT‐IR‐based methods are faster than traditional microbiological methods and can be used for the detection of live and dead bacteria from complex foods.</description><subject>Animals</subject><subject>chicken breast</subject><subject>Chickens - microbiology</subject><subject>filtration</subject><subject>Food Contamination</subject><subject>Food Microbiology</subject><subject>Fourier Analysis</subject><subject>FT‐IR</subject><subject>Hot Temperature</subject><subject>live dead differentiation</subject><subject>Meat - microbiology</subject><subject>pathogen detection</subject><subject>Salmonella enterica</subject><subject>Salmonella enterica - isolation & purification</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhVsIRELgCuAdsOjBv23PgkUUGAgKQiLJ2nK7y4mHHnuwu0NmxxE4CKfiJLh7QrZ4U6V63yvbelWFCF6Qct6sF4Q1oqaNpAuKyxRzxeji9kF1eC88nHteCyzpQfUk5zXGhGHRPK4OKJZMcU4Pq9_vYAA7-BiQCR3qvHOQIAzezLPoUO9vYNauwQx_fv4aUqnQoXPTb2KAvjeo8JC8NShDijcmZeRDtGM_czEMEdlrb79BQG0x5wGN2YcrtIpj8pDQkEzILqZNsblkUjG9Wl2Uq06_vkZ5W56XYrZxu3taPXKmz_Dsrh5Vl6v3Fycf67MvH05Pjs9qy6mgNaGqM9DRppWwJLJRlFnFiHLSkRZahlvZMYKJVYJh4A4rxgWXlIDpOOGCHVUv93u3KX4fIQ9647OdvhogjlkrQXgjiML_JWVT1i2VZIV8fkeO7QY6vU1-Y9JO_4uiAG_3wA_fw-5eJ1hPkeu1npLVU7J6ilzPketb_en489QV_4u935mozVXyWV-e0ylysiSikYL9BdxCrLo</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Davis, R</creator><creator>Burgula, Y</creator><creator>Deering, A</creator><creator>Irudayaraj, J</creator><creator>Reuhs, B.L</creator><creator>Mauer, L.J</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201012</creationdate><title>Detection and differentiation of live and heat‐treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT‐IR) spectroscopy</title><author>Davis, R ; Burgula, Y ; Deering, A ; Irudayaraj, J ; Reuhs, B.L ; Mauer, L.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4252-128daed26b7e9176823c8318f7f1beb30b7d3101c8530e4f083454721ead41453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>chicken breast</topic><topic>Chickens - microbiology</topic><topic>filtration</topic><topic>Food Contamination</topic><topic>Food Microbiology</topic><topic>Fourier Analysis</topic><topic>FT‐IR</topic><topic>Hot Temperature</topic><topic>live dead differentiation</topic><topic>Meat - microbiology</topic><topic>pathogen detection</topic><topic>Salmonella enterica</topic><topic>Salmonella enterica - isolation & purification</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, R</creatorcontrib><creatorcontrib>Burgula, Y</creatorcontrib><creatorcontrib>Deering, A</creatorcontrib><creatorcontrib>Irudayaraj, J</creatorcontrib><creatorcontrib>Reuhs, B.L</creatorcontrib><creatorcontrib>Mauer, L.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, R</au><au>Burgula, Y</au><au>Deering, A</au><au>Irudayaraj, J</au><au>Reuhs, B.L</au><au>Mauer, L.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and differentiation of live and heat‐treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT‐IR) spectroscopy</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2010-12</date><risdate>2010</risdate><volume>109</volume><issue>6</issue><spage>2019</spage><epage>2031</epage><pages>2019-2031</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims: To evaluate Fourier transform infrared (FT‐IR) techniques for detecting, quantifying, and differentiating viable and heat‐treated cells of Salmonella enterica serovars from chicken breast. Methods and Results: Salmonella enterica serovars were captured from inoculated chicken breast by filtration and immunomagnetic separation (IMS) prior to spectral collection using an FT‐IR spectrometer and IR microscopy. The detection limits, based on amide II peak area (1589 to 1493 cm⁻¹), for the Filtration‐FT‐IR and IMS‐FT‐IR methods were 10⁶ and 10⁴ CFU g⁻¹, respectively. The bacteria were detectable after 6 h of culture enrichment during a sensitivity experiment with lower initial inoculum of 10¹ CFU g⁻¹. Canonical variate analysis differentiated experimental from control spectra at a level of 10³ CFU g⁻¹. Partial least squares models were established for the quantification of Salm. enterica from chicken breast using Filtration‐FT‐IR (R² ≥ 0·95, RMSEC ≤ 0·62) and IMS‐FT‐IR (R² ≥ 0·80, RMSEC ≤ 1·61) methods. Filtration‐FT‐IR was also used to detect and quantify live Salm. enterica in the presence of heat‐treated cells with R² = 0·996, and this approach was comparable to the results of a commercial stain (BacLight™; R² = 0·998). Discriminant and canonical variate analyses of the spectra differentiated live and dead cells of different serovars of Salm. enterica. Conclusions: FT‐IR analysis coupled with separation methods is useful for the rapid detection and differentiation of Salm. enterica separated from chicken. Significance and Impact of the Study: FT‐IR‐based methods are faster than traditional microbiological methods and can be used for the detection of live and dead bacteria from complex foods.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20738442</pmid><doi>10.1111/j.1365-2672.2010.04832.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2010-12, Vol.109 (6), p.2019-2031 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_proquest_miscellaneous_851465180 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals |
subjects | Animals chicken breast Chickens - microbiology filtration Food Contamination Food Microbiology Fourier Analysis FT‐IR Hot Temperature live dead differentiation Meat - microbiology pathogen detection Salmonella enterica Salmonella enterica - isolation & purification Spectroscopy, Fourier Transform Infrared - methods |
title | Detection and differentiation of live and heat‐treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT‐IR) spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20differentiation%20of%20live%20and%20heat%E2%80%90treated%20Salmonella%20enterica%20serovars%20inoculated%20onto%20chicken%20breast%20using%20Fourier%20transform%20infrared%20(FT%E2%80%90IR)%20spectroscopy&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Davis,%20R&rft.date=2010-12&rft.volume=109&rft.issue=6&rft.spage=2019&rft.epage=2031&rft.pages=2019-2031&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/j.1365-2672.2010.04832.x&rft_dat=%3Cproquest_pubme%3E764539873%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=764539873&rft_id=info:pmid/20738442&rfr_iscdi=true |