Genotypic and phenotypic variation in diatom silicification under paleo‐oceanographic conditions

Diatoms have co‐evolved with the silicon cycle and are largely responsible for reducing surface concentrations of silicate in the ocean to their present levels. We quantify silicification in marine diatoms at a range of high silicate concentrations representative of environments found over their geo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geobiology 2010-12, Vol.8 (5), p.433-445
Hauptverfasser: FINKEL, Z.V, MATHESON, K.A, REGAN, K.S, IRWIN, A.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 5
container_start_page 433
container_title Geobiology
container_volume 8
creator FINKEL, Z.V
MATHESON, K.A
REGAN, K.S
IRWIN, A.J
description Diatoms have co‐evolved with the silicon cycle and are largely responsible for reducing surface concentrations of silicate in the ocean to their present levels. We quantify silicification in marine diatoms at a range of high silicate concentrations representative of environments found over their geological history. The species examined include Stephanopyxis turris, an ancient centric species found throughout the Cenozoic, Thalassiosira pseudonana and Thalassiosira weissflogii, two younger centric species, and two pennate ecotypes of Staurosirella pinnata isolated from different nutrient regimes. Frustule thickness and micromorphological structure are strongly affected by silicate concentration. All species become increasingly silicified with silicate concentrations at concentrations vastly in excess of surface ocean concentrations today. In contrast, the half‐saturation constant for silicate uptake for most modern diatoms is below 2 μm. Based on the results, we hypothesize that silicate uptake is multiphasic in diatoms and that multiple silicate transport systems may have evolved in response to decreases in surface silicate concentration over geological time. The oldest species examined is more heavily silicified than the more modern species, presumably reflecting the conditions under which it originated. Yet diversification in silicification can be rapid, as illustrated by greater silicification in onshore versus the offshore ecotype of the same modern species. This work suggests that silicification of fossil frustules may eventually provide a paleoproxy for surface silicate concentrations over the Cenozoic, although development of species‐specific calibrations will be necessary and the effects of a range of environmental conditions must be investigated.
doi_str_mv 10.1111/j.1472-4669.2010.00250.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851463040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>851463040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5270-a4790046386851f1e570b82a870dd5871d07d4d18f7c0e2b3a11de30bf3d290c3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0Eou3CK0BunLKM7ThOJC5QtaFSgQNUHEeO7bResnGwd2H3xiPwjDwJDim5wlw89nz_b2l-QjIKa5rq5WZNC8nyoizrNYP0CsAErA8PyOkyeLj0Up6Qsxg3CSoEp4_JCQNRy7qmp6Rt7OB3x9HpTA0mG--W6zcVnNo5P2RuyExq_TaLrnfadU7Pg_1gbMhG1Vv_68dPr60a_G1Q412Saz8YN1HxCXnUqT7ap_fnitxcXnw6f5tff2iuzl9f51owCbkqZA1QlLwqK0E7aoWEtmKqkmCMqCQ1IE1haNVJDZa1XFFqLIe244bVoPmKvJh9x-C_7m3c4dZFbfteDdbvIybX5A4F_JOUJS8k5alWpJpJHXyMwXY4BrdV4YgUcIoCNzhtGaeN4xQF_okCD0n67P6Tfbu1ZhH-3X0CXs3Ad9fb438bY_PmKjVJns9yF3f2sMhV-IKl5FLg5_cNCqBSvqMNssQ_n_lOeVS3wUW8-ZiMOdCaiho4_w3q9LCm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763471333</pqid></control><display><type>article</type><title>Genotypic and phenotypic variation in diatom silicification under paleo‐oceanographic conditions</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>FINKEL, Z.V ; MATHESON, K.A ; REGAN, K.S ; IRWIN, A.J</creator><creatorcontrib>FINKEL, Z.V ; MATHESON, K.A ; REGAN, K.S ; IRWIN, A.J</creatorcontrib><description>Diatoms have co‐evolved with the silicon cycle and are largely responsible for reducing surface concentrations of silicate in the ocean to their present levels. We quantify silicification in marine diatoms at a range of high silicate concentrations representative of environments found over their geological history. The species examined include Stephanopyxis turris, an ancient centric species found throughout the Cenozoic, Thalassiosira pseudonana and Thalassiosira weissflogii, two younger centric species, and two pennate ecotypes of Staurosirella pinnata isolated from different nutrient regimes. Frustule thickness and micromorphological structure are strongly affected by silicate concentration. All species become increasingly silicified with silicate concentrations at concentrations vastly in excess of surface ocean concentrations today. In contrast, the half‐saturation constant for silicate uptake for most modern diatoms is below 2 μm. Based on the results, we hypothesize that silicate uptake is multiphasic in diatoms and that multiple silicate transport systems may have evolved in response to decreases in surface silicate concentration over geological time. The oldest species examined is more heavily silicified than the more modern species, presumably reflecting the conditions under which it originated. Yet diversification in silicification can be rapid, as illustrated by greater silicification in onshore versus the offshore ecotype of the same modern species. This work suggests that silicification of fossil frustules may eventually provide a paleoproxy for surface silicate concentrations over the Cenozoic, although development of species‐specific calibrations will be necessary and the effects of a range of environmental conditions must be investigated.</description><identifier>ISSN: 1472-4677</identifier><identifier>EISSN: 1472-4669</identifier><identifier>DOI: 10.1111/j.1472-4669.2010.00250.x</identifier><identifier>PMID: 20597991</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adaptation, Physiological ; Animals ; Diatoms - chemistry ; Diatoms - classification ; Diatoms - genetics ; Diatoms - physiology ; Fossils ; Genotype ; Microscopy, Electron, Scanning ; Oceans and Seas ; Paleontology ; Phenotype ; Silicon - analysis ; Species Specificity ; Staurosirella pinnata ; Stephanopyxis turris ; Thalassiosira pseudonana ; Thalassiosira weissflogii</subject><ispartof>Geobiology, 2010-12, Vol.8 (5), p.433-445</ispartof><rights>2010 Blackwell Publishing Ltd</rights><rights>2010 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5270-a4790046386851f1e570b82a870dd5871d07d4d18f7c0e2b3a11de30bf3d290c3</citedby><cites>FETCH-LOGICAL-c5270-a4790046386851f1e570b82a870dd5871d07d4d18f7c0e2b3a11de30bf3d290c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1472-4669.2010.00250.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1472-4669.2010.00250.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20597991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FINKEL, Z.V</creatorcontrib><creatorcontrib>MATHESON, K.A</creatorcontrib><creatorcontrib>REGAN, K.S</creatorcontrib><creatorcontrib>IRWIN, A.J</creatorcontrib><title>Genotypic and phenotypic variation in diatom silicification under paleo‐oceanographic conditions</title><title>Geobiology</title><addtitle>Geobiology</addtitle><description>Diatoms have co‐evolved with the silicon cycle and are largely responsible for reducing surface concentrations of silicate in the ocean to their present levels. We quantify silicification in marine diatoms at a range of high silicate concentrations representative of environments found over their geological history. The species examined include Stephanopyxis turris, an ancient centric species found throughout the Cenozoic, Thalassiosira pseudonana and Thalassiosira weissflogii, two younger centric species, and two pennate ecotypes of Staurosirella pinnata isolated from different nutrient regimes. Frustule thickness and micromorphological structure are strongly affected by silicate concentration. All species become increasingly silicified with silicate concentrations at concentrations vastly in excess of surface ocean concentrations today. In contrast, the half‐saturation constant for silicate uptake for most modern diatoms is below 2 μm. Based on the results, we hypothesize that silicate uptake is multiphasic in diatoms and that multiple silicate transport systems may have evolved in response to decreases in surface silicate concentration over geological time. The oldest species examined is more heavily silicified than the more modern species, presumably reflecting the conditions under which it originated. Yet diversification in silicification can be rapid, as illustrated by greater silicification in onshore versus the offshore ecotype of the same modern species. This work suggests that silicification of fossil frustules may eventually provide a paleoproxy for surface silicate concentrations over the Cenozoic, although development of species‐specific calibrations will be necessary and the effects of a range of environmental conditions must be investigated.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Diatoms - chemistry</subject><subject>Diatoms - classification</subject><subject>Diatoms - genetics</subject><subject>Diatoms - physiology</subject><subject>Fossils</subject><subject>Genotype</subject><subject>Microscopy, Electron, Scanning</subject><subject>Oceans and Seas</subject><subject>Paleontology</subject><subject>Phenotype</subject><subject>Silicon - analysis</subject><subject>Species Specificity</subject><subject>Staurosirella pinnata</subject><subject>Stephanopyxis turris</subject><subject>Thalassiosira pseudonana</subject><subject>Thalassiosira weissflogii</subject><issn>1472-4677</issn><issn>1472-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0Eou3CK0BunLKM7ThOJC5QtaFSgQNUHEeO7bResnGwd2H3xiPwjDwJDim5wlw89nz_b2l-QjIKa5rq5WZNC8nyoizrNYP0CsAErA8PyOkyeLj0Up6Qsxg3CSoEp4_JCQNRy7qmp6Rt7OB3x9HpTA0mG--W6zcVnNo5P2RuyExq_TaLrnfadU7Pg_1gbMhG1Vv_68dPr60a_G1Q412Saz8YN1HxCXnUqT7ap_fnitxcXnw6f5tff2iuzl9f51owCbkqZA1QlLwqK0E7aoWEtmKqkmCMqCQ1IE1haNVJDZa1XFFqLIe244bVoPmKvJh9x-C_7m3c4dZFbfteDdbvIybX5A4F_JOUJS8k5alWpJpJHXyMwXY4BrdV4YgUcIoCNzhtGaeN4xQF_okCD0n67P6Tfbu1ZhH-3X0CXs3Ad9fb438bY_PmKjVJns9yF3f2sMhV-IKl5FLg5_cNCqBSvqMNssQ_n_lOeVS3wUW8-ZiMOdCaiho4_w3q9LCm</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>FINKEL, Z.V</creator><creator>MATHESON, K.A</creator><creator>REGAN, K.S</creator><creator>IRWIN, A.J</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TG</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>201012</creationdate><title>Genotypic and phenotypic variation in diatom silicification under paleo‐oceanographic conditions</title><author>FINKEL, Z.V ; MATHESON, K.A ; REGAN, K.S ; IRWIN, A.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5270-a4790046386851f1e570b82a870dd5871d07d4d18f7c0e2b3a11de30bf3d290c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Diatoms - chemistry</topic><topic>Diatoms - classification</topic><topic>Diatoms - genetics</topic><topic>Diatoms - physiology</topic><topic>Fossils</topic><topic>Genotype</topic><topic>Microscopy, Electron, Scanning</topic><topic>Oceans and Seas</topic><topic>Paleontology</topic><topic>Phenotype</topic><topic>Silicon - analysis</topic><topic>Species Specificity</topic><topic>Staurosirella pinnata</topic><topic>Stephanopyxis turris</topic><topic>Thalassiosira pseudonana</topic><topic>Thalassiosira weissflogii</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FINKEL, Z.V</creatorcontrib><creatorcontrib>MATHESON, K.A</creatorcontrib><creatorcontrib>REGAN, K.S</creatorcontrib><creatorcontrib>IRWIN, A.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Geobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FINKEL, Z.V</au><au>MATHESON, K.A</au><au>REGAN, K.S</au><au>IRWIN, A.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genotypic and phenotypic variation in diatom silicification under paleo‐oceanographic conditions</atitle><jtitle>Geobiology</jtitle><addtitle>Geobiology</addtitle><date>2010-12</date><risdate>2010</risdate><volume>8</volume><issue>5</issue><spage>433</spage><epage>445</epage><pages>433-445</pages><issn>1472-4677</issn><eissn>1472-4669</eissn><abstract>Diatoms have co‐evolved with the silicon cycle and are largely responsible for reducing surface concentrations of silicate in the ocean to their present levels. We quantify silicification in marine diatoms at a range of high silicate concentrations representative of environments found over their geological history. The species examined include Stephanopyxis turris, an ancient centric species found throughout the Cenozoic, Thalassiosira pseudonana and Thalassiosira weissflogii, two younger centric species, and two pennate ecotypes of Staurosirella pinnata isolated from different nutrient regimes. Frustule thickness and micromorphological structure are strongly affected by silicate concentration. All species become increasingly silicified with silicate concentrations at concentrations vastly in excess of surface ocean concentrations today. In contrast, the half‐saturation constant for silicate uptake for most modern diatoms is below 2 μm. Based on the results, we hypothesize that silicate uptake is multiphasic in diatoms and that multiple silicate transport systems may have evolved in response to decreases in surface silicate concentration over geological time. The oldest species examined is more heavily silicified than the more modern species, presumably reflecting the conditions under which it originated. Yet diversification in silicification can be rapid, as illustrated by greater silicification in onshore versus the offshore ecotype of the same modern species. This work suggests that silicification of fossil frustules may eventually provide a paleoproxy for surface silicate concentrations over the Cenozoic, although development of species‐specific calibrations will be necessary and the effects of a range of environmental conditions must be investigated.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20597991</pmid><doi>10.1111/j.1472-4669.2010.00250.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1472-4677
ispartof Geobiology, 2010-12, Vol.8 (5), p.433-445
issn 1472-4677
1472-4669
language eng
recordid cdi_proquest_miscellaneous_851463040
source MEDLINE; Wiley Online Library All Journals
subjects Adaptation, Physiological
Animals
Diatoms - chemistry
Diatoms - classification
Diatoms - genetics
Diatoms - physiology
Fossils
Genotype
Microscopy, Electron, Scanning
Oceans and Seas
Paleontology
Phenotype
Silicon - analysis
Species Specificity
Staurosirella pinnata
Stephanopyxis turris
Thalassiosira pseudonana
Thalassiosira weissflogii
title Genotypic and phenotypic variation in diatom silicification under paleo‐oceanographic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genotypic%20and%20phenotypic%20variation%20in%20diatom%20silicification%20under%20paleo%E2%80%90oceanographic%20conditions&rft.jtitle=Geobiology&rft.au=FINKEL,%20Z.V&rft.date=2010-12&rft.volume=8&rft.issue=5&rft.spage=433&rft.epage=445&rft.pages=433-445&rft.issn=1472-4677&rft.eissn=1472-4669&rft_id=info:doi/10.1111/j.1472-4669.2010.00250.x&rft_dat=%3Cproquest_cross%3E851463040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763471333&rft_id=info:pmid/20597991&rfr_iscdi=true