Respiratory protein–generated reactive oxygen species as an antimicrobial strategy

The evolution of the host-pathogen relationship comprises a series of invasive-defensive tactics elicited by both participants. The stereotype is that the antimicrobial immune response requires multistep processes. Little is known about the primordial immunosurveillance system, which probably has co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Immunology 2007-10, Vol.8 (10), p.1114-1122
Hauptverfasser: Jiang, Naxin, Tan, Nguan Soon, Ho, Bow, Ding, Jeak Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 10
container_start_page 1114
container_title Nature Immunology
container_volume 8
creator Jiang, Naxin
Tan, Nguan Soon
Ho, Bow
Ding, Jeak Ling
description The evolution of the host-pathogen relationship comprises a series of invasive-defensive tactics elicited by both participants. The stereotype is that the antimicrobial immune response requires multistep processes. Little is known about the primordial immunosurveillance system, which probably has components that directly link sensors and effectors. Here we found that the respiratory proteins of both the horseshoe crab and human were directly activated by microbial proteases and were enhanced by pathogen-associated molecular patterns, resulting in the production of more reactive oxygen species. Hemolytic virulent pathogens, which produce proteases as invasive factors, are more susceptible to this killing mechanism. This 'shortcut' antimicrobial strategy represents a fundamental and universal mode of immunosurveillance, which has been in existence since before the split of protostomes and deuterostomes and still persists today.
doi_str_mv 10.1038/ni1501
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_851461492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188791163</galeid><sourcerecordid>A188791163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-6b8313ed76942b3f81578dc96b837e2b0ff373c250e366d87ff289365d83c48f3</originalsourceid><addsrcrecordid>eNqFkltrFDEUxwdR7EX9CDIoVHzYmsvk9liKl0JBqPU5ZDInQ8psZk0y0n3rd-g39JOYYReXLcWSQMI_v3OS88-pqjcYnWJE5afgMUP4WXWIGVELojB__m-P5EF1lNINQrgRvHlZHWAhCGaUH1bXV5BWPpo8xnW9imMGH_7c3fcQoIjQ1RGMzf431OPtuqh1WoH1kGpTZigz-6W3cWy9GeqU55h-_ap64cyQ4PV2Pa5-fvl8ff5tcfn968X52eXCMoTygreSYgqd4KohLXUSMyE7q2ZdAGmRc1RQSxgCynknhXNEKspZJ6ltpKPH1YdN3vLwXxOkrJc-WRgGE2CckpYMNxw3ihTy5L8kl8UmitiTIFaMNIypAr57AN6MUwylXE0IEQ0iaL72_QbqzQDaBzcWh-ycUZ9hKYXCmNNCnT5CldFB8XYM4HzR9wI-7gUUJsNt7s2Ukr74cbXPbgsqn5RSBKdX0S9NXGuM9Nw6etM6BXy7LWhql9DtsG2v7NxO5Sj0EHcVP0j1F_yDyKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222740202</pqid></control><display><type>article</type><title>Respiratory protein–generated reactive oxygen species as an antimicrobial strategy</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jiang, Naxin ; Tan, Nguan Soon ; Ho, Bow ; Ding, Jeak Ling</creator><creatorcontrib>Jiang, Naxin ; Tan, Nguan Soon ; Ho, Bow ; Ding, Jeak Ling</creatorcontrib><description>The evolution of the host-pathogen relationship comprises a series of invasive-defensive tactics elicited by both participants. The stereotype is that the antimicrobial immune response requires multistep processes. Little is known about the primordial immunosurveillance system, which probably has components that directly link sensors and effectors. Here we found that the respiratory proteins of both the horseshoe crab and human were directly activated by microbial proteases and were enhanced by pathogen-associated molecular patterns, resulting in the production of more reactive oxygen species. Hemolytic virulent pathogens, which produce proteases as invasive factors, are more susceptible to this killing mechanism. This 'shortcut' antimicrobial strategy represents a fundamental and universal mode of immunosurveillance, which has been in existence since before the split of protostomes and deuterostomes and still persists today.</description><identifier>ISSN: 1529-2908</identifier><identifier>EISSN: 1529-2916</identifier><identifier>EISSN: 1365-2567</identifier><identifier>DOI: 10.1038/ni1501</identifier><identifier>PMID: 17721536</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Bacterial proteins ; Biomedical and Life Sciences ; Biomedicine ; Blood Bactericidal Activity ; Decapoda ; Enzyme Activation ; Enzyme Precursors - metabolism ; Evaluation ; Health aspects ; Hemocyanins - physiology ; Hemoglobins - physiology ; Horseshoe Crabs ; Humans ; Immune response ; Immunity, Innate ; Immunology ; Immunopathology ; Infectious Diseases ; Monophenol Monooxygenase - metabolism ; Oxygen ; Pathogens ; Properties ; Quinone ; Reactive Oxygen Species - metabolism ; Sensors</subject><ispartof>Nature Immunology, 2007-10, Vol.8 (10), p.1114-1122</ispartof><rights>Springer Nature America, Inc. 2007</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-6b8313ed76942b3f81578dc96b837e2b0ff373c250e366d87ff289365d83c48f3</citedby><cites>FETCH-LOGICAL-c500t-6b8313ed76942b3f81578dc96b837e2b0ff373c250e366d87ff289365d83c48f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ni1501$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ni1501$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17721536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Naxin</creatorcontrib><creatorcontrib>Tan, Nguan Soon</creatorcontrib><creatorcontrib>Ho, Bow</creatorcontrib><creatorcontrib>Ding, Jeak Ling</creatorcontrib><title>Respiratory protein–generated reactive oxygen species as an antimicrobial strategy</title><title>Nature Immunology</title><addtitle>Nat Immunol</addtitle><addtitle>Nat Immunol</addtitle><description>The evolution of the host-pathogen relationship comprises a series of invasive-defensive tactics elicited by both participants. The stereotype is that the antimicrobial immune response requires multistep processes. Little is known about the primordial immunosurveillance system, which probably has components that directly link sensors and effectors. Here we found that the respiratory proteins of both the horseshoe crab and human were directly activated by microbial proteases and were enhanced by pathogen-associated molecular patterns, resulting in the production of more reactive oxygen species. Hemolytic virulent pathogens, which produce proteases as invasive factors, are more susceptible to this killing mechanism. This 'shortcut' antimicrobial strategy represents a fundamental and universal mode of immunosurveillance, which has been in existence since before the split of protostomes and deuterostomes and still persists today.</description><subject>Animals</subject><subject>Bacterial proteins</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood Bactericidal Activity</subject><subject>Decapoda</subject><subject>Enzyme Activation</subject><subject>Enzyme Precursors - metabolism</subject><subject>Evaluation</subject><subject>Health aspects</subject><subject>Hemocyanins - physiology</subject><subject>Hemoglobins - physiology</subject><subject>Horseshoe Crabs</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunity, Innate</subject><subject>Immunology</subject><subject>Immunopathology</subject><subject>Infectious Diseases</subject><subject>Monophenol Monooxygenase - metabolism</subject><subject>Oxygen</subject><subject>Pathogens</subject><subject>Properties</subject><subject>Quinone</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Sensors</subject><issn>1529-2908</issn><issn>1529-2916</issn><issn>1365-2567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkltrFDEUxwdR7EX9CDIoVHzYmsvk9liKl0JBqPU5ZDInQ8psZk0y0n3rd-g39JOYYReXLcWSQMI_v3OS88-pqjcYnWJE5afgMUP4WXWIGVELojB__m-P5EF1lNINQrgRvHlZHWAhCGaUH1bXV5BWPpo8xnW9imMGH_7c3fcQoIjQ1RGMzf431OPtuqh1WoH1kGpTZigz-6W3cWy9GeqU55h-_ap64cyQ4PV2Pa5-fvl8ff5tcfn968X52eXCMoTygreSYgqd4KohLXUSMyE7q2ZdAGmRc1RQSxgCynknhXNEKspZJ6ltpKPH1YdN3vLwXxOkrJc-WRgGE2CckpYMNxw3ihTy5L8kl8UmitiTIFaMNIypAr57AN6MUwylXE0IEQ0iaL72_QbqzQDaBzcWh-ycUZ9hKYXCmNNCnT5CldFB8XYM4HzR9wI-7gUUJsNt7s2Ukr74cbXPbgsqn5RSBKdX0S9NXGuM9Nw6etM6BXy7LWhql9DtsG2v7NxO5Sj0EHcVP0j1F_yDyKk</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Jiang, Naxin</creator><creator>Tan, Nguan Soon</creator><creator>Ho, Bow</creator><creator>Ding, Jeak Ling</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7T7</scope><scope>C1K</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20071001</creationdate><title>Respiratory protein–generated reactive oxygen species as an antimicrobial strategy</title><author>Jiang, Naxin ; Tan, Nguan Soon ; Ho, Bow ; Ding, Jeak Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-6b8313ed76942b3f81578dc96b837e2b0ff373c250e366d87ff289365d83c48f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Bacterial proteins</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood Bactericidal Activity</topic><topic>Decapoda</topic><topic>Enzyme Activation</topic><topic>Enzyme Precursors - metabolism</topic><topic>Evaluation</topic><topic>Health aspects</topic><topic>Hemocyanins - physiology</topic><topic>Hemoglobins - physiology</topic><topic>Horseshoe Crabs</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunity, Innate</topic><topic>Immunology</topic><topic>Immunopathology</topic><topic>Infectious Diseases</topic><topic>Monophenol Monooxygenase - metabolism</topic><topic>Oxygen</topic><topic>Pathogens</topic><topic>Properties</topic><topic>Quinone</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Naxin</creatorcontrib><creatorcontrib>Tan, Nguan Soon</creatorcontrib><creatorcontrib>Ho, Bow</creatorcontrib><creatorcontrib>Ding, Jeak Ling</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature Immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Naxin</au><au>Tan, Nguan Soon</au><au>Ho, Bow</au><au>Ding, Jeak Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory protein–generated reactive oxygen species as an antimicrobial strategy</atitle><jtitle>Nature Immunology</jtitle><stitle>Nat Immunol</stitle><addtitle>Nat Immunol</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>8</volume><issue>10</issue><spage>1114</spage><epage>1122</epage><pages>1114-1122</pages><issn>1529-2908</issn><eissn>1529-2916</eissn><eissn>1365-2567</eissn><abstract>The evolution of the host-pathogen relationship comprises a series of invasive-defensive tactics elicited by both participants. The stereotype is that the antimicrobial immune response requires multistep processes. Little is known about the primordial immunosurveillance system, which probably has components that directly link sensors and effectors. Here we found that the respiratory proteins of both the horseshoe crab and human were directly activated by microbial proteases and were enhanced by pathogen-associated molecular patterns, resulting in the production of more reactive oxygen species. Hemolytic virulent pathogens, which produce proteases as invasive factors, are more susceptible to this killing mechanism. This 'shortcut' antimicrobial strategy represents a fundamental and universal mode of immunosurveillance, which has been in existence since before the split of protostomes and deuterostomes and still persists today.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17721536</pmid><doi>10.1038/ni1501</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1529-2908
ispartof Nature Immunology, 2007-10, Vol.8 (10), p.1114-1122
issn 1529-2908
1529-2916
1365-2567
language eng
recordid cdi_proquest_miscellaneous_851461492
source Wiley Free Content; MEDLINE; Springer Nature - Complete Springer Journals; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Bacterial proteins
Biomedical and Life Sciences
Biomedicine
Blood Bactericidal Activity
Decapoda
Enzyme Activation
Enzyme Precursors - metabolism
Evaluation
Health aspects
Hemocyanins - physiology
Hemoglobins - physiology
Horseshoe Crabs
Humans
Immune response
Immunity, Innate
Immunology
Immunopathology
Infectious Diseases
Monophenol Monooxygenase - metabolism
Oxygen
Pathogens
Properties
Quinone
Reactive Oxygen Species - metabolism
Sensors
title Respiratory protein–generated reactive oxygen species as an antimicrobial strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20protein%E2%80%93generated%20reactive%20oxygen%20species%20as%20an%20antimicrobial%20strategy&rft.jtitle=Nature%20Immunology&rft.au=Jiang,%20Naxin&rft.date=2007-10-01&rft.volume=8&rft.issue=10&rft.spage=1114&rft.epage=1122&rft.pages=1114-1122&rft.issn=1529-2908&rft.eissn=1529-2916&rft_id=info:doi/10.1038/ni1501&rft_dat=%3Cgale_proqu%3EA188791163%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222740202&rft_id=info:pmid/17721536&rft_galeid=A188791163&rfr_iscdi=true