Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex

The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-02, Vol.134 (5), p.054316-054316-9
Hauptverfasser: Tayler, Michael C. D., Ouyang, Bin, Howard, Brian J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054316-9
container_issue 5
container_start_page 054316
container_title The Journal of chemical physics
container_volume 134
creator Tayler, Michael C. D.
Ouyang, Bin
Howard, Brian J.
description The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states. The transitions are fitted to within a few kilohertz of the observed frequencies using a molecule-fixed effective rotational Hamiltonian for the separate A and E vibrational species of the G 12 permutation-inversion symmetry group. Interpretation of the motion problem uses an internal-vibration and overall-rotation angular momentum coupling scheme and full sets of rotational and centrifugal distortion constants are determined. The tunneling frequencies of the proton-transfer motion are measured for the ground A and E methyl rotation states as 250.4442(12) and −136.1673(30) MHz, respectively. The slight deviation of the latter tunneling frequency from being one half of the former, as simple theory otherwise predicts, is due to different degrees of mixing in wavefunctions between the ground and excited states.
doi_str_mv 10.1063/1.3528688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851227630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>851227630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-d168bb4f9741e94a4c196a9e666dd4dc027bea736ab6b92a7703de1a3a9d71ff3</originalsourceid><addsrcrecordid>eNp1kc1O3DAUha0KVIZpF7xA5R3qIuCfYMddICHUFiQkNrC2HPumNUrs1HYQvAJPjTszLStW3nznHOu7CB1RckKJ4Kf0hJ-xTnTdB7SipFONFIrsoRUhjDZKEHGADnN-IIRQydqP6IBRTjhlaoVe7kMyjzD68AuX34DzDLakmG2cn3EcsI3LPILDPpRkpjiCXUaTcFlC2Iam6CB_wxc4l8VtIi4u_Qh4TrHEgGss5AFSbdgMDDFN3jbGQvEWG-td3ZjqxtMntD-YMcPn3btG9z--311eNTe3P68vL24ay7kqjaOi6_t2ULKloFrTWqqEUSCEcK51ljDZg5FcmF70ihkpCXdADTfKSToMfI2Ot731h38WyEVPPlsYRxMgLll3Z5QxKaqhNfq6JW01khMMek5-MulZU6L_mtdU78xX9suudekncP_Jf6orcL4FsvXFFB_D-21vR9HVmd4chb8CTzWWrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851227630</pqid></control><display><type>article</type><title>Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tayler, Michael C. D. ; Ouyang, Bin ; Howard, Brian J.</creator><creatorcontrib>Tayler, Michael C. D. ; Ouyang, Bin ; Howard, Brian J.</creatorcontrib><description>The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states. The transitions are fitted to within a few kilohertz of the observed frequencies using a molecule-fixed effective rotational Hamiltonian for the separate A and E vibrational species of the G 12 permutation-inversion symmetry group. Interpretation of the motion problem uses an internal-vibration and overall-rotation angular momentum coupling scheme and full sets of rotational and centrifugal distortion constants are determined. The tunneling frequencies of the proton-transfer motion are measured for the ground A and E methyl rotation states as 250.4442(12) and −136.1673(30) MHz, respectively. The slight deviation of the latter tunneling frequency from being one half of the former, as simple theory otherwise predicts, is due to different degrees of mixing in wavefunctions between the ground and excited states.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3528688</identifier><identifier>PMID: 21303129</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2011-02, Vol.134 (5), p.054316-054316-9</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-d168bb4f9741e94a4c196a9e666dd4dc027bea736ab6b92a7703de1a3a9d71ff3</citedby><cites>FETCH-LOGICAL-c339t-d168bb4f9741e94a4c196a9e666dd4dc027bea736ab6b92a7703de1a3a9d71ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1558,4509,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21303129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayler, Michael C. D.</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Howard, Brian J.</creatorcontrib><title>Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states. The transitions are fitted to within a few kilohertz of the observed frequencies using a molecule-fixed effective rotational Hamiltonian for the separate A and E vibrational species of the G 12 permutation-inversion symmetry group. Interpretation of the motion problem uses an internal-vibration and overall-rotation angular momentum coupling scheme and full sets of rotational and centrifugal distortion constants are determined. The tunneling frequencies of the proton-transfer motion are measured for the ground A and E methyl rotation states as 250.4442(12) and −136.1673(30) MHz, respectively. The slight deviation of the latter tunneling frequency from being one half of the former, as simple theory otherwise predicts, is due to different degrees of mixing in wavefunctions between the ground and excited states.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAUha0KVIZpF7xA5R3qIuCfYMddICHUFiQkNrC2HPumNUrs1HYQvAJPjTszLStW3nznHOu7CB1RckKJ4Kf0hJ-xTnTdB7SipFONFIrsoRUhjDZKEHGADnN-IIRQydqP6IBRTjhlaoVe7kMyjzD68AuX34DzDLakmG2cn3EcsI3LPILDPpRkpjiCXUaTcFlC2Iam6CB_wxc4l8VtIi4u_Qh4TrHEgGss5AFSbdgMDDFN3jbGQvEWG-td3ZjqxtMntD-YMcPn3btG9z--311eNTe3P68vL24ay7kqjaOi6_t2ULKloFrTWqqEUSCEcK51ljDZg5FcmF70ihkpCXdADTfKSToMfI2Ot731h38WyEVPPlsYRxMgLll3Z5QxKaqhNfq6JW01khMMek5-MulZU6L_mtdU78xX9suudekncP_Jf6orcL4FsvXFFB_D-21vR9HVmd4chb8CTzWWrw</recordid><startdate>20110207</startdate><enddate>20110207</enddate><creator>Tayler, Michael C. D.</creator><creator>Ouyang, Bin</creator><creator>Howard, Brian J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110207</creationdate><title>Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex</title><author>Tayler, Michael C. D. ; Ouyang, Bin ; Howard, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-d168bb4f9741e94a4c196a9e666dd4dc027bea736ab6b92a7703de1a3a9d71ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayler, Michael C. D.</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Howard, Brian J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayler, Michael C. D.</au><au>Ouyang, Bin</au><au>Howard, Brian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-02-07</date><risdate>2011</risdate><volume>134</volume><issue>5</issue><spage>054316</spage><epage>054316-9</epage><pages>054316-054316-9</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states. The transitions are fitted to within a few kilohertz of the observed frequencies using a molecule-fixed effective rotational Hamiltonian for the separate A and E vibrational species of the G 12 permutation-inversion symmetry group. Interpretation of the motion problem uses an internal-vibration and overall-rotation angular momentum coupling scheme and full sets of rotational and centrifugal distortion constants are determined. The tunneling frequencies of the proton-transfer motion are measured for the ground A and E methyl rotation states as 250.4442(12) and −136.1673(30) MHz, respectively. The slight deviation of the latter tunneling frequency from being one half of the former, as simple theory otherwise predicts, is due to different degrees of mixing in wavefunctions between the ground and excited states.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21303129</pmid><doi>10.1063/1.3528688</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2011-02, Vol.134 (5), p.054316-054316-9
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_851227630
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20spectroscopy%20of%20coupled%20intramolecular%20tunneling%20modes:%20A%20study%20of%20double%20proton%20transfer%20in%20the%20formic-acetic%20acid%20complex&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Tayler,%20Michael%20C.%20D.&rft.date=2011-02-07&rft.volume=134&rft.issue=5&rft.spage=054316&rft.epage=054316-9&rft.pages=054316-054316-9&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3528688&rft_dat=%3Cproquest_cross%3E851227630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851227630&rft_id=info:pmid/21303129&rfr_iscdi=true