Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra

Object This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2011-02, Vol.24 (1), p.35-42
Hauptverfasser: Fuster-Garcia, Elies, Navarro, Clara, Vicente, Javier, Tortajada, Salvador, García-Gómez, Juan M., Sáez, Carlos, Calvar, Jorge, Griffiths, John, Julià-Sapé, Margarida, Howe, Franklyn A., Pujol, Jesús, Peet, Andrew C., Heerschap, Arend, Moreno-Torres, Àngel, Martínez-Bisbal, M. C., Martínez-Granados, Beatriz, Wesseling, Pieter, Semmler, Wolfhard, Capellades, Jaume, Majós, Carles, Alberich-Bayarri, Àngel, Capdevila, Antoni, Monleón, Daniel, Martí-Bonmatí, Luis, Arús, Carles, Celda, Bernardo, Robles, Montserrat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 35
container_title Magma (New York, N.Y.)
container_volume 24
creator Fuster-Garcia, Elies
Navarro, Clara
Vicente, Javier
Tortajada, Salvador
García-Gómez, Juan M.
Sáez, Carlos
Calvar, Jorge
Griffiths, John
Julià-Sapé, Margarida
Howe, Franklyn A.
Pujol, Jesús
Peet, Andrew C.
Heerschap, Arend
Moreno-Torres, Àngel
Martínez-Bisbal, M. C.
Martínez-Granados, Beatriz
Wesseling, Pieter
Semmler, Wolfhard
Capellades, Jaume
Majós, Carles
Alberich-Bayarri, Àngel
Capdevila, Antoni
Monleón, Daniel
Martí-Bonmatí, Luis
Arús, Carles
Celda, Bernardo
Robles, Montserrat
description Object This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the combination of 1.5T and 3T databases. Materials and methods Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade malignant tumours and common grade II glial tumours were evaluated with a subsequently-acquired set of 155 1.5T and 37 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field strengths (1.5T and 3T) was also performed. Results Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets (0.87 ± 0.03 for 1.5T and 0.88 ± 0.03 for 3.0T). Moreover, non-significant differences were observed with most metabolite ratios and spectral patterns. Conclusion These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T 1 H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on 1.5T acquisitions can therefore continue to be used with data from the new 3T instruments.
doi_str_mv 10.1007/s10334-010-0241-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_850562563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>850562563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3018-5facb401fd183e3cb0c7c5f8791575a2d6d655470e0041cab6a326e9eab33dfc3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EotvCA3BBvnFKmbHjJHtEK6CVipDotlfL_1Kl2sTB4wjtK_Qp-iw8GV62wI3TaDTffNLMj7E3COcI0L4nBCnrChAqEDVW3TO2QqlE1TUNPmcrWDddpUQtT9gp0T2AQAXyJTsRKOp1LWDFHjZxnE0e7LAb8p7bkH-EMHG5_fmIF_z6tvry7Zp7kw03k-dmyXEstOM2mWHieRnjkrgfzN0UaSBOyzzHlDntKYeRuDUUPI_Tb8WhIR57judqy__paQ4uJ_OKvejNjsLrp3rGbj593G4uqquvny83H64qJwHLPb1xtgbsPXYySGfBtU71XbtG1SojfOMbpeoWAkCNztjGSNGEdTBWSt87ecbeHb1zit-XQFmPA7mw25kpxIV0p0A1QjWykHgkXYpEKfR6TsNo0l4j6EMC-piALgnoQwK6Kztvn-yLHYP_u_Hn5QUQR4DKaLoLSd-XH07l4v9YfwFsKJFj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>850562563</pqid></control><display><type>article</type><title>Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fuster-Garcia, Elies ; Navarro, Clara ; Vicente, Javier ; Tortajada, Salvador ; García-Gómez, Juan M. ; Sáez, Carlos ; Calvar, Jorge ; Griffiths, John ; Julià-Sapé, Margarida ; Howe, Franklyn A. ; Pujol, Jesús ; Peet, Andrew C. ; Heerschap, Arend ; Moreno-Torres, Àngel ; Martínez-Bisbal, M. C. ; Martínez-Granados, Beatriz ; Wesseling, Pieter ; Semmler, Wolfhard ; Capellades, Jaume ; Majós, Carles ; Alberich-Bayarri, Àngel ; Capdevila, Antoni ; Monleón, Daniel ; Martí-Bonmatí, Luis ; Arús, Carles ; Celda, Bernardo ; Robles, Montserrat</creator><creatorcontrib>Fuster-Garcia, Elies ; Navarro, Clara ; Vicente, Javier ; Tortajada, Salvador ; García-Gómez, Juan M. ; Sáez, Carlos ; Calvar, Jorge ; Griffiths, John ; Julià-Sapé, Margarida ; Howe, Franklyn A. ; Pujol, Jesús ; Peet, Andrew C. ; Heerschap, Arend ; Moreno-Torres, Àngel ; Martínez-Bisbal, M. C. ; Martínez-Granados, Beatriz ; Wesseling, Pieter ; Semmler, Wolfhard ; Capellades, Jaume ; Majós, Carles ; Alberich-Bayarri, Àngel ; Capdevila, Antoni ; Monleón, Daniel ; Martí-Bonmatí, Luis ; Arús, Carles ; Celda, Bernardo ; Robles, Montserrat</creatorcontrib><description>Object This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the combination of 1.5T and 3T databases. Materials and methods Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade malignant tumours and common grade II glial tumours were evaluated with a subsequently-acquired set of 155 1.5T and 37 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field strengths (1.5T and 3T) was also performed. Results Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets (0.87 ± 0.03 for 1.5T and 0.88 ± 0.03 for 3.0T). Moreover, non-significant differences were observed with most metabolite ratios and spectral patterns. Conclusion These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T 1 H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on 1.5T acquisitions can therefore continue to be used with data from the new 3T instruments.</description><identifier>ISSN: 0968-5243</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-010-0241-8</identifier><identifier>PMID: 21249420</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biomedical Engineering and Bioengineering ; Brain Neoplasms - diagnosis ; Brain Neoplasms - metabolism ; Computer Appl. in Life Sciences ; Databases, Factual ; Health Informatics ; Humans ; Imaging ; Magnetic Resonance Spectroscopy - methods ; Medicine ; Medicine &amp; Public Health ; Pattern Recognition, Automated - methods ; Protons ; Radiology ; Research Article ; Sensitivity and Specificity ; Solid State Physics</subject><ispartof>Magma (New York, N.Y.), 2011-02, Vol.24 (1), p.35-42</ispartof><rights>ESMRMB 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3018-5facb401fd183e3cb0c7c5f8791575a2d6d655470e0041cab6a326e9eab33dfc3</citedby><cites>FETCH-LOGICAL-c3018-5facb401fd183e3cb0c7c5f8791575a2d6d655470e0041cab6a326e9eab33dfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10334-010-0241-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10334-010-0241-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21249420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuster-Garcia, Elies</creatorcontrib><creatorcontrib>Navarro, Clara</creatorcontrib><creatorcontrib>Vicente, Javier</creatorcontrib><creatorcontrib>Tortajada, Salvador</creatorcontrib><creatorcontrib>García-Gómez, Juan M.</creatorcontrib><creatorcontrib>Sáez, Carlos</creatorcontrib><creatorcontrib>Calvar, Jorge</creatorcontrib><creatorcontrib>Griffiths, John</creatorcontrib><creatorcontrib>Julià-Sapé, Margarida</creatorcontrib><creatorcontrib>Howe, Franklyn A.</creatorcontrib><creatorcontrib>Pujol, Jesús</creatorcontrib><creatorcontrib>Peet, Andrew C.</creatorcontrib><creatorcontrib>Heerschap, Arend</creatorcontrib><creatorcontrib>Moreno-Torres, Àngel</creatorcontrib><creatorcontrib>Martínez-Bisbal, M. C.</creatorcontrib><creatorcontrib>Martínez-Granados, Beatriz</creatorcontrib><creatorcontrib>Wesseling, Pieter</creatorcontrib><creatorcontrib>Semmler, Wolfhard</creatorcontrib><creatorcontrib>Capellades, Jaume</creatorcontrib><creatorcontrib>Majós, Carles</creatorcontrib><creatorcontrib>Alberich-Bayarri, Àngel</creatorcontrib><creatorcontrib>Capdevila, Antoni</creatorcontrib><creatorcontrib>Monleón, Daniel</creatorcontrib><creatorcontrib>Martí-Bonmatí, Luis</creatorcontrib><creatorcontrib>Arús, Carles</creatorcontrib><creatorcontrib>Celda, Bernardo</creatorcontrib><creatorcontrib>Robles, Montserrat</creatorcontrib><title>Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra</title><title>Magma (New York, N.Y.)</title><addtitle>Magn Reson Mater Phy</addtitle><addtitle>MAGMA</addtitle><description>Object This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the combination of 1.5T and 3T databases. Materials and methods Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade malignant tumours and common grade II glial tumours were evaluated with a subsequently-acquired set of 155 1.5T and 37 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field strengths (1.5T and 3T) was also performed. Results Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets (0.87 ± 0.03 for 1.5T and 0.88 ± 0.03 for 3.0T). Moreover, non-significant differences were observed with most metabolite ratios and spectral patterns. Conclusion These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T 1 H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on 1.5T acquisitions can therefore continue to be used with data from the new 3T instruments.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - metabolism</subject><subject>Computer Appl. in Life Sciences</subject><subject>Databases, Factual</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protons</subject><subject>Radiology</subject><subject>Research Article</subject><subject>Sensitivity and Specificity</subject><subject>Solid State Physics</subject><issn>0968-5243</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQhy0EotvCA3BBvnFKmbHjJHtEK6CVipDotlfL_1Kl2sTB4wjtK_Qp-iw8GV62wI3TaDTffNLMj7E3COcI0L4nBCnrChAqEDVW3TO2QqlE1TUNPmcrWDddpUQtT9gp0T2AQAXyJTsRKOp1LWDFHjZxnE0e7LAb8p7bkH-EMHG5_fmIF_z6tvry7Zp7kw03k-dmyXEstOM2mWHieRnjkrgfzN0UaSBOyzzHlDntKYeRuDUUPI_Tb8WhIR57judqy__paQ4uJ_OKvejNjsLrp3rGbj593G4uqquvny83H64qJwHLPb1xtgbsPXYySGfBtU71XbtG1SojfOMbpeoWAkCNztjGSNGEdTBWSt87ecbeHb1zit-XQFmPA7mw25kpxIV0p0A1QjWykHgkXYpEKfR6TsNo0l4j6EMC-piALgnoQwK6Kztvn-yLHYP_u_Hn5QUQR4DKaLoLSd-XH07l4v9YfwFsKJFj</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Fuster-Garcia, Elies</creator><creator>Navarro, Clara</creator><creator>Vicente, Javier</creator><creator>Tortajada, Salvador</creator><creator>García-Gómez, Juan M.</creator><creator>Sáez, Carlos</creator><creator>Calvar, Jorge</creator><creator>Griffiths, John</creator><creator>Julià-Sapé, Margarida</creator><creator>Howe, Franklyn A.</creator><creator>Pujol, Jesús</creator><creator>Peet, Andrew C.</creator><creator>Heerschap, Arend</creator><creator>Moreno-Torres, Àngel</creator><creator>Martínez-Bisbal, M. C.</creator><creator>Martínez-Granados, Beatriz</creator><creator>Wesseling, Pieter</creator><creator>Semmler, Wolfhard</creator><creator>Capellades, Jaume</creator><creator>Majós, Carles</creator><creator>Alberich-Bayarri, Àngel</creator><creator>Capdevila, Antoni</creator><creator>Monleón, Daniel</creator><creator>Martí-Bonmatí, Luis</creator><creator>Arús, Carles</creator><creator>Celda, Bernardo</creator><creator>Robles, Montserrat</creator><general>Springer-Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201102</creationdate><title>Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra</title><author>Fuster-Garcia, Elies ; Navarro, Clara ; Vicente, Javier ; Tortajada, Salvador ; García-Gómez, Juan M. ; Sáez, Carlos ; Calvar, Jorge ; Griffiths, John ; Julià-Sapé, Margarida ; Howe, Franklyn A. ; Pujol, Jesús ; Peet, Andrew C. ; Heerschap, Arend ; Moreno-Torres, Àngel ; Martínez-Bisbal, M. C. ; Martínez-Granados, Beatriz ; Wesseling, Pieter ; Semmler, Wolfhard ; Capellades, Jaume ; Majós, Carles ; Alberich-Bayarri, Àngel ; Capdevila, Antoni ; Monleón, Daniel ; Martí-Bonmatí, Luis ; Arús, Carles ; Celda, Bernardo ; Robles, Montserrat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3018-5facb401fd183e3cb0c7c5f8791575a2d6d655470e0041cab6a326e9eab33dfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - metabolism</topic><topic>Computer Appl. in Life Sciences</topic><topic>Databases, Factual</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protons</topic><topic>Radiology</topic><topic>Research Article</topic><topic>Sensitivity and Specificity</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuster-Garcia, Elies</creatorcontrib><creatorcontrib>Navarro, Clara</creatorcontrib><creatorcontrib>Vicente, Javier</creatorcontrib><creatorcontrib>Tortajada, Salvador</creatorcontrib><creatorcontrib>García-Gómez, Juan M.</creatorcontrib><creatorcontrib>Sáez, Carlos</creatorcontrib><creatorcontrib>Calvar, Jorge</creatorcontrib><creatorcontrib>Griffiths, John</creatorcontrib><creatorcontrib>Julià-Sapé, Margarida</creatorcontrib><creatorcontrib>Howe, Franklyn A.</creatorcontrib><creatorcontrib>Pujol, Jesús</creatorcontrib><creatorcontrib>Peet, Andrew C.</creatorcontrib><creatorcontrib>Heerschap, Arend</creatorcontrib><creatorcontrib>Moreno-Torres, Àngel</creatorcontrib><creatorcontrib>Martínez-Bisbal, M. C.</creatorcontrib><creatorcontrib>Martínez-Granados, Beatriz</creatorcontrib><creatorcontrib>Wesseling, Pieter</creatorcontrib><creatorcontrib>Semmler, Wolfhard</creatorcontrib><creatorcontrib>Capellades, Jaume</creatorcontrib><creatorcontrib>Majós, Carles</creatorcontrib><creatorcontrib>Alberich-Bayarri, Àngel</creatorcontrib><creatorcontrib>Capdevila, Antoni</creatorcontrib><creatorcontrib>Monleón, Daniel</creatorcontrib><creatorcontrib>Martí-Bonmatí, Luis</creatorcontrib><creatorcontrib>Arús, Carles</creatorcontrib><creatorcontrib>Celda, Bernardo</creatorcontrib><creatorcontrib>Robles, Montserrat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuster-Garcia, Elies</au><au>Navarro, Clara</au><au>Vicente, Javier</au><au>Tortajada, Salvador</au><au>García-Gómez, Juan M.</au><au>Sáez, Carlos</au><au>Calvar, Jorge</au><au>Griffiths, John</au><au>Julià-Sapé, Margarida</au><au>Howe, Franklyn A.</au><au>Pujol, Jesús</au><au>Peet, Andrew C.</au><au>Heerschap, Arend</au><au>Moreno-Torres, Àngel</au><au>Martínez-Bisbal, M. C.</au><au>Martínez-Granados, Beatriz</au><au>Wesseling, Pieter</au><au>Semmler, Wolfhard</au><au>Capellades, Jaume</au><au>Majós, Carles</au><au>Alberich-Bayarri, Àngel</au><au>Capdevila, Antoni</au><au>Monleón, Daniel</au><au>Martí-Bonmatí, Luis</au><au>Arús, Carles</au><au>Celda, Bernardo</au><au>Robles, Montserrat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra</atitle><jtitle>Magma (New York, N.Y.)</jtitle><stitle>Magn Reson Mater Phy</stitle><addtitle>MAGMA</addtitle><date>2011-02</date><risdate>2011</risdate><volume>24</volume><issue>1</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>0968-5243</issn><eissn>1352-8661</eissn><abstract>Object This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the combination of 1.5T and 3T databases. Materials and methods Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade malignant tumours and common grade II glial tumours were evaluated with a subsequently-acquired set of 155 1.5T and 37 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field strengths (1.5T and 3T) was also performed. Results Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets (0.87 ± 0.03 for 1.5T and 0.88 ± 0.03 for 3.0T). Moreover, non-significant differences were observed with most metabolite ratios and spectral patterns. Conclusion These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T 1 H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on 1.5T acquisitions can therefore continue to be used with data from the new 3T instruments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21249420</pmid><doi>10.1007/s10334-010-0241-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0968-5243
ispartof Magma (New York, N.Y.), 2011-02, Vol.24 (1), p.35-42
issn 0968-5243
1352-8661
language eng
recordid cdi_proquest_miscellaneous_850562563
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomedical Engineering and Bioengineering
Brain Neoplasms - diagnosis
Brain Neoplasms - metabolism
Computer Appl. in Life Sciences
Databases, Factual
Health Informatics
Humans
Imaging
Magnetic Resonance Spectroscopy - methods
Medicine
Medicine & Public Health
Pattern Recognition, Automated - methods
Protons
Radiology
Research Article
Sensitivity and Specificity
Solid State Physics
title Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compatibility%20between%203T%C2%A01H%20SV-MRS%20data%20and%20automatic%20brain%20tumour%20diagnosis%20support%20systems%20based%20on%20databases%20of%201.5T%201H%20SV-MRS%20spectra&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Fuster-Garcia,%20Elies&rft.date=2011-02&rft.volume=24&rft.issue=1&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=0968-5243&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-010-0241-8&rft_dat=%3Cproquest_cross%3E850562563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=850562563&rft_id=info:pmid/21249420&rfr_iscdi=true