Intrinsic viscosity of wormlike polymer chains

The intrinsic viscosity of wormlike polymer chains has been calculated using the Kirkwood–Riseman method. The chain statistics are taken from the Hermans and Ullman analysis of the Kratky–Porod model. Results are obtained for several degrees of chain extension for chains of varying molecular weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1968-12, Vol.49 (12), p.5486-5497
1. Verfasser: Ullman, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5497
container_issue 12
container_start_page 5486
container_title The Journal of chemical physics
container_volume 49
creator Ullman, R
description The intrinsic viscosity of wormlike polymer chains has been calculated using the Kirkwood–Riseman method. The chain statistics are taken from the Hermans and Ullman analysis of the Kratky–Porod model. Results are obtained for several degrees of chain extension for chains of varying molecular weight as a function of the degree of hydrodynamic interaction. The finite cross section of the chain is explicitly introduced in the model. The limiting results of the rigid rod and of the random coil are obtained at low and high degrees of chain coiling, respectively. Application of this model to DNA leads to a Kuhn statistical bond length of 1020 Å. The model was also applied to flexible polyelectrolytes in solutions of low salt concentration and to cellulose nitrate. A method of using the tabulated results for estimates of the degree of coiling of other polymer systems is described.
doi_str_mv 10.1063/1.1670077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_85048007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>85048007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-da13dec1c467fde6dc9314625b31df0a91367d0ecc554f8760c08ea3c03289773</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRaqwu_AFCVoKLxPcyX5mllKqFghtdD9OZCUaTTp1Jlf57Iw2u7uZwufcQco1QIgh6jyUKCSDlCckQalVIoeCUZAAVFkqAOCcXKX0AAMqKzciMy0pwrjJSrrZDbLeptfl3m2xI7XDIQ5P_hNh37afPd6E79D7m9t2M2CU5a0yX_NWUc_L2uHxdPBfrl6fV4mFdWMrEUDiD1HmLlgnZOC-cVRSZqPiGomvAKKRCOvDWcs6aWgqwUHtDLdCqVlLSObk99u5i-Nr7NOh-XOe7zmx92Cddc2D1eHgE746gjSGl6Bu9i21v4kEj6D83GvXkZmRvptL9pvfun5xk0F-et11C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>85048007</pqid></control><display><type>article</type><title>Intrinsic viscosity of wormlike polymer chains</title><source>MEDLINE</source><source>AIP Digital Archive</source><creator>Ullman, R</creator><creatorcontrib>Ullman, R</creatorcontrib><description>The intrinsic viscosity of wormlike polymer chains has been calculated using the Kirkwood–Riseman method. The chain statistics are taken from the Hermans and Ullman analysis of the Kratky–Porod model. Results are obtained for several degrees of chain extension for chains of varying molecular weight as a function of the degree of hydrodynamic interaction. The finite cross section of the chain is explicitly introduced in the model. The limiting results of the rigid rod and of the random coil are obtained at low and high degrees of chain coiling, respectively. Application of this model to DNA leads to a Kuhn statistical bond length of 1020 Å. The model was also applied to flexible polyelectrolytes in solutions of low salt concentration and to cellulose nitrate. A method of using the tabulated results for estimates of the degree of coiling of other polymer systems is described.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1670077</identifier><identifier>PMID: 5726559</identifier><language>eng</language><publisher>United States</publisher><subject>Chemical Phenomena ; Chemistry, Physical ; DNA ; Models, Chemical ; Polymers ; Viscosity</subject><ispartof>The Journal of chemical physics, 1968-12, Vol.49 (12), p.5486-5497</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-da13dec1c467fde6dc9314625b31df0a91367d0ecc554f8760c08ea3c03289773</citedby><cites>FETCH-LOGICAL-c346t-da13dec1c467fde6dc9314625b31df0a91367d0ecc554f8760c08ea3c03289773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/5726559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ullman, R</creatorcontrib><title>Intrinsic viscosity of wormlike polymer chains</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The intrinsic viscosity of wormlike polymer chains has been calculated using the Kirkwood–Riseman method. The chain statistics are taken from the Hermans and Ullman analysis of the Kratky–Porod model. Results are obtained for several degrees of chain extension for chains of varying molecular weight as a function of the degree of hydrodynamic interaction. The finite cross section of the chain is explicitly introduced in the model. The limiting results of the rigid rod and of the random coil are obtained at low and high degrees of chain coiling, respectively. Application of this model to DNA leads to a Kuhn statistical bond length of 1020 Å. The model was also applied to flexible polyelectrolytes in solutions of low salt concentration and to cellulose nitrate. A method of using the tabulated results for estimates of the degree of coiling of other polymer systems is described.</description><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>DNA</subject><subject>Models, Chemical</subject><subject>Polymers</subject><subject>Viscosity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1968</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AURQdRaqwu_AFCVoKLxPcyX5mllKqFghtdD9OZCUaTTp1Jlf57Iw2u7uZwufcQco1QIgh6jyUKCSDlCckQalVIoeCUZAAVFkqAOCcXKX0AAMqKzciMy0pwrjJSrrZDbLeptfl3m2xI7XDIQ5P_hNh37afPd6E79D7m9t2M2CU5a0yX_NWUc_L2uHxdPBfrl6fV4mFdWMrEUDiD1HmLlgnZOC-cVRSZqPiGomvAKKRCOvDWcs6aWgqwUHtDLdCqVlLSObk99u5i-Nr7NOh-XOe7zmx92Cddc2D1eHgE746gjSGl6Bu9i21v4kEj6D83GvXkZmRvptL9pvfun5xk0F-et11C</recordid><startdate>19681215</startdate><enddate>19681215</enddate><creator>Ullman, R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19681215</creationdate><title>Intrinsic viscosity of wormlike polymer chains</title><author>Ullman, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-da13dec1c467fde6dc9314625b31df0a91367d0ecc554f8760c08ea3c03289773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1968</creationdate><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>DNA</topic><topic>Models, Chemical</topic><topic>Polymers</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullman, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullman, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic viscosity of wormlike polymer chains</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>1968-12-15</date><risdate>1968</risdate><volume>49</volume><issue>12</issue><spage>5486</spage><epage>5497</epage><pages>5486-5497</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The intrinsic viscosity of wormlike polymer chains has been calculated using the Kirkwood–Riseman method. The chain statistics are taken from the Hermans and Ullman analysis of the Kratky–Porod model. Results are obtained for several degrees of chain extension for chains of varying molecular weight as a function of the degree of hydrodynamic interaction. The finite cross section of the chain is explicitly introduced in the model. The limiting results of the rigid rod and of the random coil are obtained at low and high degrees of chain coiling, respectively. Application of this model to DNA leads to a Kuhn statistical bond length of 1020 Å. The model was also applied to flexible polyelectrolytes in solutions of low salt concentration and to cellulose nitrate. A method of using the tabulated results for estimates of the degree of coiling of other polymer systems is described.</abstract><cop>United States</cop><pmid>5726559</pmid><doi>10.1063/1.1670077</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1968-12, Vol.49 (12), p.5486-5497
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_85048007
source MEDLINE; AIP Digital Archive
subjects Chemical Phenomena
Chemistry, Physical
DNA
Models, Chemical
Polymers
Viscosity
title Intrinsic viscosity of wormlike polymer chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20viscosity%20of%20wormlike%20polymer%20chains&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ullman,%20R&rft.date=1968-12-15&rft.volume=49&rft.issue=12&rft.spage=5486&rft.epage=5497&rft.pages=5486-5497&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1670077&rft_dat=%3Cproquest_cross%3E85048007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=85048007&rft_id=info:pmid/5726559&rfr_iscdi=true