A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured i...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2010-01, Vol.10 (1), p.36-42 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Lab on a chip |
container_volume | 10 |
creator | Jang, Kyung-Jin Suh, Kahp-Yang |
description | We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering. |
doi_str_mv | 10.1039/b907515a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_849486741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849486741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p172t-3c32847f9ac4b26b86842835fdd120cba5a3c53fbd31e292b6adcc4cb22b6d8d3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhnNQbK2Cv0By87Sar90kx1L8goIXPXlYkkkCkWy3Jhuh_94V69nD8M4LD8PwIHRFyS0lXN9ZTWRLW3OCllRI3hCq5QKdl_JBCG1Fp87QghHCBBFqid7XeKhpik0yB5_xECGPIdXoImDnvyJ4HMaMfQgRot9NGGa6Zo_Nzs1j0qHEgseAs58LnqqtyWQMPqVygU6DScVfHnOF3h7uXzdPzfbl8Xmz3jZ7KtnUcOBMCRm0AWFZZ1WnBFO8Dc5RRsCa1nBoebCOU880s51xAAIsm1enHF-hm9-7-zx-Vl-mfojl5wOz82MtvRJaqE4K-i8pOdezIk1m8vpIVjt41-9zHEw-9H_m-DeFvm2-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733954690</pqid></control><display><type>article</type><title>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Jang, Kyung-Jin ; Suh, Kahp-Yang</creator><creatorcontrib>Jang, Kyung-Jin ; Suh, Kahp-Yang</creatorcontrib><description>We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.</description><identifier>ISSN: 1473-0197</identifier><identifier>DOI: 10.1039/b907515a</identifier><identifier>PMID: 20024048</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cells, Cultured ; Channels ; Culture ; Devices ; Dimethylpolysiloxanes - chemistry ; Ducts ; Equipment Design ; Fluidics ; Kidney Tubules, Collecting - cytology ; Lab-On-A-Chip Devices ; Male ; Membranes, Artificial ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Multilayers ; Porosity ; Rats ; Rats, Sprague-Dawley ; Surgical implants</subject><ispartof>Lab on a chip, 2010-01, Vol.10 (1), p.36-42</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20024048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Kyung-Jin</creatorcontrib><creatorcontrib>Suh, Kahp-Yang</creatorcontrib><title>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.</description><subject>Animals</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cells, Cultured</subject><subject>Channels</subject><subject>Culture</subject><subject>Devices</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Ducts</subject><subject>Equipment Design</subject><subject>Fluidics</subject><subject>Kidney Tubules, Collecting - cytology</subject><subject>Lab-On-A-Chip Devices</subject><subject>Male</subject><subject>Membranes, Artificial</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Multilayers</subject><subject>Porosity</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surgical implants</subject><issn>1473-0197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhnNQbK2Cv0By87Sar90kx1L8goIXPXlYkkkCkWy3Jhuh_94V69nD8M4LD8PwIHRFyS0lXN9ZTWRLW3OCllRI3hCq5QKdl_JBCG1Fp87QghHCBBFqid7XeKhpik0yB5_xECGPIdXoImDnvyJ4HMaMfQgRot9NGGa6Zo_Nzs1j0qHEgseAs58LnqqtyWQMPqVygU6DScVfHnOF3h7uXzdPzfbl8Xmz3jZ7KtnUcOBMCRm0AWFZZ1WnBFO8Dc5RRsCa1nBoebCOU880s51xAAIsm1enHF-hm9-7-zx-Vl-mfojl5wOz82MtvRJaqE4K-i8pOdezIk1m8vpIVjt41-9zHEw-9H_m-DeFvm2-</recordid><startdate>20100107</startdate><enddate>20100107</enddate><creator>Jang, Kyung-Jin</creator><creator>Suh, Kahp-Yang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20100107</creationdate><title>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</title><author>Jang, Kyung-Jin ; Suh, Kahp-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p172t-3c32847f9ac4b26b86842835fdd120cba5a3c53fbd31e292b6adcc4cb22b6d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cells, Cultured</topic><topic>Channels</topic><topic>Culture</topic><topic>Devices</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Ducts</topic><topic>Equipment Design</topic><topic>Fluidics</topic><topic>Kidney Tubules, Collecting - cytology</topic><topic>Lab-On-A-Chip Devices</topic><topic>Male</topic><topic>Membranes, Artificial</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Multilayers</topic><topic>Porosity</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Kyung-Jin</creatorcontrib><creatorcontrib>Suh, Kahp-Yang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Kyung-Jin</au><au>Suh, Kahp-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2010-01-07</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>36</spage><epage>42</epage><pages>36-42</pages><issn>1473-0197</issn><abstract>We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.</abstract><cop>England</cop><pmid>20024048</pmid><doi>10.1039/b907515a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2010-01, Vol.10 (1), p.36-42 |
issn | 1473-0197 |
language | eng |
recordid | cdi_proquest_miscellaneous_849486741 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Cell Culture Techniques - instrumentation Cell Culture Techniques - methods Cells, Cultured Channels Culture Devices Dimethylpolysiloxanes - chemistry Ducts Equipment Design Fluidics Kidney Tubules, Collecting - cytology Lab-On-A-Chip Devices Male Membranes, Artificial Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidics Multilayers Porosity Rats Rats, Sprague-Dawley Surgical implants |
title | A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-layer%20microfluidic%20device%20for%20efficient%20culture%20and%20analysis%20of%20renal%20tubular%20cells&rft.jtitle=Lab%20on%20a%20chip&rft.au=Jang,%20Kyung-Jin&rft.date=2010-01-07&rft.volume=10&rft.issue=1&rft.spage=36&rft.epage=42&rft.pages=36-42&rft.issn=1473-0197&rft_id=info:doi/10.1039/b907515a&rft_dat=%3Cproquest_pubme%3E849486741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733954690&rft_id=info:pmid/20024048&rfr_iscdi=true |