A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells

We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2010-01, Vol.10 (1), p.36-42
Hauptverfasser: Jang, Kyung-Jin, Suh, Kahp-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 36
container_title Lab on a chip
container_volume 10
creator Jang, Kyung-Jin
Suh, Kahp-Yang
description We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.
doi_str_mv 10.1039/b907515a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_849486741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849486741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p172t-3c32847f9ac4b26b86842835fdd120cba5a3c53fbd31e292b6adcc4cb22b6d8d3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhnNQbK2Cv0By87Sar90kx1L8goIXPXlYkkkCkWy3Jhuh_94V69nD8M4LD8PwIHRFyS0lXN9ZTWRLW3OCllRI3hCq5QKdl_JBCG1Fp87QghHCBBFqid7XeKhpik0yB5_xECGPIdXoImDnvyJ4HMaMfQgRot9NGGa6Zo_Nzs1j0qHEgseAs58LnqqtyWQMPqVygU6DScVfHnOF3h7uXzdPzfbl8Xmz3jZ7KtnUcOBMCRm0AWFZZ1WnBFO8Dc5RRsCa1nBoebCOU880s51xAAIsm1enHF-hm9-7-zx-Vl-mfojl5wOz82MtvRJaqE4K-i8pOdezIk1m8vpIVjt41-9zHEw-9H_m-DeFvm2-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733954690</pqid></control><display><type>article</type><title>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Jang, Kyung-Jin ; Suh, Kahp-Yang</creator><creatorcontrib>Jang, Kyung-Jin ; Suh, Kahp-Yang</creatorcontrib><description>We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.</description><identifier>ISSN: 1473-0197</identifier><identifier>DOI: 10.1039/b907515a</identifier><identifier>PMID: 20024048</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cells, Cultured ; Channels ; Culture ; Devices ; Dimethylpolysiloxanes - chemistry ; Ducts ; Equipment Design ; Fluidics ; Kidney Tubules, Collecting - cytology ; Lab-On-A-Chip Devices ; Male ; Membranes, Artificial ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Multilayers ; Porosity ; Rats ; Rats, Sprague-Dawley ; Surgical implants</subject><ispartof>Lab on a chip, 2010-01, Vol.10 (1), p.36-42</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20024048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Kyung-Jin</creatorcontrib><creatorcontrib>Suh, Kahp-Yang</creatorcontrib><title>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.</description><subject>Animals</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cells, Cultured</subject><subject>Channels</subject><subject>Culture</subject><subject>Devices</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Ducts</subject><subject>Equipment Design</subject><subject>Fluidics</subject><subject>Kidney Tubules, Collecting - cytology</subject><subject>Lab-On-A-Chip Devices</subject><subject>Male</subject><subject>Membranes, Artificial</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Multilayers</subject><subject>Porosity</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surgical implants</subject><issn>1473-0197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhnNQbK2Cv0By87Sar90kx1L8goIXPXlYkkkCkWy3Jhuh_94V69nD8M4LD8PwIHRFyS0lXN9ZTWRLW3OCllRI3hCq5QKdl_JBCG1Fp87QghHCBBFqid7XeKhpik0yB5_xECGPIdXoImDnvyJ4HMaMfQgRot9NGGa6Zo_Nzs1j0qHEgseAs58LnqqtyWQMPqVygU6DScVfHnOF3h7uXzdPzfbl8Xmz3jZ7KtnUcOBMCRm0AWFZZ1WnBFO8Dc5RRsCa1nBoebCOU880s51xAAIsm1enHF-hm9-7-zx-Vl-mfojl5wOz82MtvRJaqE4K-i8pOdezIk1m8vpIVjt41-9zHEw-9H_m-DeFvm2-</recordid><startdate>20100107</startdate><enddate>20100107</enddate><creator>Jang, Kyung-Jin</creator><creator>Suh, Kahp-Yang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20100107</creationdate><title>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</title><author>Jang, Kyung-Jin ; Suh, Kahp-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p172t-3c32847f9ac4b26b86842835fdd120cba5a3c53fbd31e292b6adcc4cb22b6d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cells, Cultured</topic><topic>Channels</topic><topic>Culture</topic><topic>Devices</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Ducts</topic><topic>Equipment Design</topic><topic>Fluidics</topic><topic>Kidney Tubules, Collecting - cytology</topic><topic>Lab-On-A-Chip Devices</topic><topic>Male</topic><topic>Membranes, Artificial</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Multilayers</topic><topic>Porosity</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Kyung-Jin</creatorcontrib><creatorcontrib>Suh, Kahp-Yang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Kyung-Jin</au><au>Suh, Kahp-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2010-01-07</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>36</spage><epage>42</epage><pages>36-42</pages><issn>1473-0197</issn><abstract>We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.</abstract><cop>England</cop><pmid>20024048</pmid><doi>10.1039/b907515a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2010-01, Vol.10 (1), p.36-42
issn 1473-0197
language eng
recordid cdi_proquest_miscellaneous_849486741
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cells, Cultured
Channels
Culture
Devices
Dimethylpolysiloxanes - chemistry
Ducts
Equipment Design
Fluidics
Kidney Tubules, Collecting - cytology
Lab-On-A-Chip Devices
Male
Membranes, Artificial
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidics
Multilayers
Porosity
Rats
Rats, Sprague-Dawley
Surgical implants
title A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-layer%20microfluidic%20device%20for%20efficient%20culture%20and%20analysis%20of%20renal%20tubular%20cells&rft.jtitle=Lab%20on%20a%20chip&rft.au=Jang,%20Kyung-Jin&rft.date=2010-01-07&rft.volume=10&rft.issue=1&rft.spage=36&rft.epage=42&rft.pages=36-42&rft.issn=1473-0197&rft_id=info:doi/10.1039/b907515a&rft_dat=%3Cproquest_pubme%3E849486741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733954690&rft_id=info:pmid/20024048&rfr_iscdi=true