Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results
Abstract The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot press...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2010-10, Vol.224 (10), p.1141-1150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 10 |
container_start_page | 1141 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering |
container_volume | 224 |
creator | Zanj, A Kalabkhani, A Abdous, M A Karimi, H |
description | Abstract
The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained. |
doi_str_mv | 10.1243/09544100JAERO726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849484112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09544100JAERO726</sage_id><sourcerecordid>849484112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</originalsourceid><addsrcrecordid>eNp1kU9rFTEUxYNY8Nm6dxl04aZjk0xmkixLqf9oKYiuh0zm5jVlZjLNzaD1c_iBzXtPQQrNJuSe3zmccAl5zdl7LmR9xkwjJWfsy_nl1xsl2mdkI5jkVc1E85xsdnK101-Ql4h3rJymrTfk93UcYBzDvD2lGKZ1tDnE-ZTaeaBxyWEKv_YTGj219DZmuiRAXNO_OT5ghon6mIo-hvs1DAWJSwm1c6a4WAcU5m2YYR_q4rTYFLBYf4R8S-HnAilMMGc70hK9jhlPyJG3I8Krv_cx-f7h8tvFp-rq5uPni_OrytWtzlUzgFCsrrlUg5IgBmON8X6w5cVb51oDqu173zbK6aavOSjve8ONAGV74epj8u6QWwrfr4C5mwK6fXOIK3ZaGqkl56KQbx6Rd3FNcynXacV1o7VRBXr7FMQNM4w3TOhCsQPlUkRM4Lul_N-mh46zbrfK7vEqi6U6WNBu4b_Qp_g_xr6h6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871858897</pqid></control><display><type>article</type><title>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</title><source>SAGE Complete</source><creator>Zanj, A ; Kalabkhani, A ; Abdous, M A ; Karimi, H</creator><creatorcontrib>Zanj, A ; Kalabkhani, A ; Abdous, M A ; Karimi, H</creatorcontrib><description>Abstract
The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1243/09544100JAERO726</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acceptability ; Computer simulation ; Contamination ; Dynamical systems ; Expulsion ; Flow velocity ; Gas turbine engines ; Heat transfer ; Mathematical models ; Modelling ; Nonlinear dynamics ; Nonlinear systems ; Optimization ; Optimization techniques ; Periodic operation ; Pressure distribution ; Pressurization ; Pressurizing ; Propellant consumption ; Propellants ; Propellers ; Pumps ; Simulation ; Ullage</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2010-10, Vol.224 (10), p.1141-1150</ispartof><rights>2010 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</citedby><cites>FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09544100JAERO726$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09544100JAERO726$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zanj, A</creatorcontrib><creatorcontrib>Kalabkhani, A</creatorcontrib><creatorcontrib>Abdous, M A</creatorcontrib><creatorcontrib>Karimi, H</creatorcontrib><title>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Abstract
The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.</description><subject>Acceptability</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>Dynamical systems</subject><subject>Expulsion</subject><subject>Flow velocity</subject><subject>Gas turbine engines</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Periodic operation</subject><subject>Pressure distribution</subject><subject>Pressurization</subject><subject>Pressurizing</subject><subject>Propellant consumption</subject><subject>Propellants</subject><subject>Propellers</subject><subject>Pumps</subject><subject>Simulation</subject><subject>Ullage</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU9rFTEUxYNY8Nm6dxl04aZjk0xmkixLqf9oKYiuh0zm5jVlZjLNzaD1c_iBzXtPQQrNJuSe3zmccAl5zdl7LmR9xkwjJWfsy_nl1xsl2mdkI5jkVc1E85xsdnK101-Ql4h3rJymrTfk93UcYBzDvD2lGKZ1tDnE-ZTaeaBxyWEKv_YTGj219DZmuiRAXNO_OT5ghon6mIo-hvs1DAWJSwm1c6a4WAcU5m2YYR_q4rTYFLBYf4R8S-HnAilMMGc70hK9jhlPyJG3I8Krv_cx-f7h8tvFp-rq5uPni_OrytWtzlUzgFCsrrlUg5IgBmON8X6w5cVb51oDqu173zbK6aavOSjve8ONAGV74epj8u6QWwrfr4C5mwK6fXOIK3ZaGqkl56KQbx6Rd3FNcynXacV1o7VRBXr7FMQNM4w3TOhCsQPlUkRM4Lul_N-mh46zbrfK7vEqi6U6WNBu4b_Qp_g_xr6h6w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Zanj, A</creator><creator>Kalabkhani, A</creator><creator>Abdous, M A</creator><creator>Karimi, H</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</title><author>Zanj, A ; Kalabkhani, A ; Abdous, M A ; Karimi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceptability</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>Dynamical systems</topic><topic>Expulsion</topic><topic>Flow velocity</topic><topic>Gas turbine engines</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Periodic operation</topic><topic>Pressure distribution</topic><topic>Pressurization</topic><topic>Pressurizing</topic><topic>Propellant consumption</topic><topic>Propellants</topic><topic>Propellers</topic><topic>Pumps</topic><topic>Simulation</topic><topic>Ullage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanj, A</creatorcontrib><creatorcontrib>Kalabkhani, A</creatorcontrib><creatorcontrib>Abdous, M A</creatorcontrib><creatorcontrib>Karimi, H</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanj, A</au><au>Kalabkhani, A</au><au>Abdous, M A</au><au>Karimi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>224</volume><issue>10</issue><spage>1141</spage><epage>1150</epage><pages>1141-1150</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Abstract
The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/09544100JAERO726</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4100 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2010-10, Vol.224 (10), p.1141-1150 |
issn | 0954-4100 2041-3025 |
language | eng |
recordid | cdi_proquest_miscellaneous_849484112 |
source | SAGE Complete |
subjects | Acceptability Computer simulation Contamination Dynamical systems Expulsion Flow velocity Gas turbine engines Heat transfer Mathematical models Modelling Nonlinear dynamics Nonlinear systems Optimization Optimization techniques Periodic operation Pressure distribution Pressurization Pressurizing Propellant consumption Propellants Propellers Pumps Simulation Ullage |
title | Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling,%20simulation,%20and%20optimization%20of%20a%20hot%20pressurization%20system%20for%20a%20liquid%20propellant%20space%20engine%20and%20comparison%20with%20experimental%20results&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Zanj,%20A&rft.date=2010-10-01&rft.volume=224&rft.issue=10&rft.spage=1141&rft.epage=1150&rft.pages=1141-1150&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1243/09544100JAERO726&rft_dat=%3Cproquest_cross%3E849484112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871858897&rft_id=info:pmid/&rft_sage_id=10.1243_09544100JAERO726&rfr_iscdi=true |