Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results

Abstract The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2010-10, Vol.224 (10), p.1141-1150
Hauptverfasser: Zanj, A, Kalabkhani, A, Abdous, M A, Karimi, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 10
container_start_page 1141
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 224
creator Zanj, A
Kalabkhani, A
Abdous, M A
Karimi, H
description Abstract The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.
doi_str_mv 10.1243/09544100JAERO726
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849484112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09544100JAERO726</sage_id><sourcerecordid>849484112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</originalsourceid><addsrcrecordid>eNp1kU9rFTEUxYNY8Nm6dxl04aZjk0xmkixLqf9oKYiuh0zm5jVlZjLNzaD1c_iBzXtPQQrNJuSe3zmccAl5zdl7LmR9xkwjJWfsy_nl1xsl2mdkI5jkVc1E85xsdnK101-Ql4h3rJymrTfk93UcYBzDvD2lGKZ1tDnE-ZTaeaBxyWEKv_YTGj219DZmuiRAXNO_OT5ghon6mIo-hvs1DAWJSwm1c6a4WAcU5m2YYR_q4rTYFLBYf4R8S-HnAilMMGc70hK9jhlPyJG3I8Krv_cx-f7h8tvFp-rq5uPni_OrytWtzlUzgFCsrrlUg5IgBmON8X6w5cVb51oDqu173zbK6aavOSjve8ONAGV74epj8u6QWwrfr4C5mwK6fXOIK3ZaGqkl56KQbx6Rd3FNcynXacV1o7VRBXr7FMQNM4w3TOhCsQPlUkRM4Lul_N-mh46zbrfK7vEqi6U6WNBu4b_Qp_g_xr6h6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871858897</pqid></control><display><type>article</type><title>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</title><source>SAGE Complete</source><creator>Zanj, A ; Kalabkhani, A ; Abdous, M A ; Karimi, H</creator><creatorcontrib>Zanj, A ; Kalabkhani, A ; Abdous, M A ; Karimi, H</creatorcontrib><description>Abstract The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1243/09544100JAERO726</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acceptability ; Computer simulation ; Contamination ; Dynamical systems ; Expulsion ; Flow velocity ; Gas turbine engines ; Heat transfer ; Mathematical models ; Modelling ; Nonlinear dynamics ; Nonlinear systems ; Optimization ; Optimization techniques ; Periodic operation ; Pressure distribution ; Pressurization ; Pressurizing ; Propellant consumption ; Propellants ; Propellers ; Pumps ; Simulation ; Ullage</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2010-10, Vol.224 (10), p.1141-1150</ispartof><rights>2010 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</citedby><cites>FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09544100JAERO726$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09544100JAERO726$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zanj, A</creatorcontrib><creatorcontrib>Kalabkhani, A</creatorcontrib><creatorcontrib>Abdous, M A</creatorcontrib><creatorcontrib>Karimi, H</creatorcontrib><title>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Abstract The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.</description><subject>Acceptability</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>Dynamical systems</subject><subject>Expulsion</subject><subject>Flow velocity</subject><subject>Gas turbine engines</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Periodic operation</subject><subject>Pressure distribution</subject><subject>Pressurization</subject><subject>Pressurizing</subject><subject>Propellant consumption</subject><subject>Propellants</subject><subject>Propellers</subject><subject>Pumps</subject><subject>Simulation</subject><subject>Ullage</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU9rFTEUxYNY8Nm6dxl04aZjk0xmkixLqf9oKYiuh0zm5jVlZjLNzaD1c_iBzXtPQQrNJuSe3zmccAl5zdl7LmR9xkwjJWfsy_nl1xsl2mdkI5jkVc1E85xsdnK101-Ql4h3rJymrTfk93UcYBzDvD2lGKZ1tDnE-ZTaeaBxyWEKv_YTGj219DZmuiRAXNO_OT5ghon6mIo-hvs1DAWJSwm1c6a4WAcU5m2YYR_q4rTYFLBYf4R8S-HnAilMMGc70hK9jhlPyJG3I8Krv_cx-f7h8tvFp-rq5uPni_OrytWtzlUzgFCsrrlUg5IgBmON8X6w5cVb51oDqu173zbK6aavOSjve8ONAGV74epj8u6QWwrfr4C5mwK6fXOIK3ZaGqkl56KQbx6Rd3FNcynXacV1o7VRBXr7FMQNM4w3TOhCsQPlUkRM4Lul_N-mh46zbrfK7vEqi6U6WNBu4b_Qp_g_xr6h6w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Zanj, A</creator><creator>Kalabkhani, A</creator><creator>Abdous, M A</creator><creator>Karimi, H</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</title><author>Zanj, A ; Kalabkhani, A ; Abdous, M A ; Karimi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5de27033147d74e2d9a99ffdad7416cc69e76bbf657c85b31e7ffb9192e7ab2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceptability</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>Dynamical systems</topic><topic>Expulsion</topic><topic>Flow velocity</topic><topic>Gas turbine engines</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Periodic operation</topic><topic>Pressure distribution</topic><topic>Pressurization</topic><topic>Pressurizing</topic><topic>Propellant consumption</topic><topic>Propellants</topic><topic>Propellers</topic><topic>Pumps</topic><topic>Simulation</topic><topic>Ullage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanj, A</creatorcontrib><creatorcontrib>Kalabkhani, A</creatorcontrib><creatorcontrib>Abdous, M A</creatorcontrib><creatorcontrib>Karimi, H</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanj, A</au><au>Kalabkhani, A</au><au>Abdous, M A</au><au>Karimi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>224</volume><issue>10</issue><spage>1141</spage><epage>1150</epage><pages>1141-1150</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Abstract The main objective of this paper is to optimize the performance of a gas generator (GGO) in order to reduce propellant consumption, flyweight, and contamination. Hence, the periodic operation of a GGO is offered. For this purpose, a non-linear modelling and dynamic simulation of a hot pressurization system is developed in order to predict the history of pressure, temperature, and mass flowrate of pressurant and propellant during the expulsion of the propellant from a tank. This model calculates the change in ullage volume owing to expulsion of the propellant. It also considers the net heat transfer in the ullage space. The new approach is validated using experimental results. It is noticeable that despite other modelling approaches, the present pressurization system modelling is not decoupled from the turbopump system. It means that the interaction is observed between these two systems. Finally, the periodic operation of a GGO is compared with its normal performance, and acceptable results are obtained.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/09544100JAERO726</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2010-10, Vol.224 (10), p.1141-1150
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_miscellaneous_849484112
source SAGE Complete
subjects Acceptability
Computer simulation
Contamination
Dynamical systems
Expulsion
Flow velocity
Gas turbine engines
Heat transfer
Mathematical models
Modelling
Nonlinear dynamics
Nonlinear systems
Optimization
Optimization techniques
Periodic operation
Pressure distribution
Pressurization
Pressurizing
Propellant consumption
Propellants
Propellers
Pumps
Simulation
Ullage
title Modelling, simulation, and optimization of a hot pressurization system for a liquid propellant space engine and comparison with experimental results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling,%20simulation,%20and%20optimization%20of%20a%20hot%20pressurization%20system%20for%20a%20liquid%20propellant%20space%20engine%20and%20comparison%20with%20experimental%20results&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Zanj,%20A&rft.date=2010-10-01&rft.volume=224&rft.issue=10&rft.spage=1141&rft.epage=1150&rft.pages=1141-1150&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1243/09544100JAERO726&rft_dat=%3Cproquest_cross%3E849484112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871858897&rft_id=info:pmid/&rft_sage_id=10.1243_09544100JAERO726&rfr_iscdi=true