Turbulence measurements using a nanoscale thermal anemometry probe
A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 μm × 60 μm, suspended between two current-carrying contacts and the sensor is an order of magnitude small...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2010-11, Vol.663, p.160-179 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | |
container_start_page | 160 |
container_title | Journal of fluid mechanics |
container_volume | 663 |
creator | BAILEY, SEAN C. C. KUNKEL, GARY J. HULTMARK, MARCUS VALLIKIVI, MARGIT HILL, JEFFREY P. MEYER, KARL A. TSAY, CANDICE ARNOLD, CRAIG B. SMITS, ALEXANDER J. |
description | A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 μm × 60 μm, suspended between two current-carrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics. |
doi_str_mv | 10.1017/S0022112010003447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849481250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112010003447</cupid><sourcerecordid>849481250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-5be66ea877c9fa524db609274dade5f6cfc47323ca962bc6a94c4c54c1489d953</originalsourceid><addsrcrecordid>eNp9kEtLHUEQhZsQITfGH-BuEILZjOl3Ty-jSVRQRLyiu6amp0bHzMN0z0Duv7eHezGg6KoW56tTpw4hu4weMMrM9ytKOWeMU0YpFVKaD2TBpLa50VJ9JItZzmf9E_kc4wOlTFBrFuRwOYVyarH3mHUIcQrYYT_GbIpNf5dB1kM_RA8tZuM9hg7aDHrshg7HsMoew1DiF7JVQxtxZzO3yfXvX8ujk_zs4vj06MdZ7pUWY65K1BqhMMbbGhSXVamp5UZWUKGqta-9NIILD1bz0muw0kuvpGeysJVVYpvsr33T1b8TxtF1TfTYtinQMEVXSCsLxhVN5Ld3SaYl5wVTtEjo3gv0YZhCn_5wRnNhZMFZgtga8mGIMWDtHkPTQVg5Rt1cv3tVf9r5ujGGub46QO-b-LzIE8S1mL3zNdfEEf896xD-OG2EUU4fX7rb8xtqf55od5N4sckCXRma6g7_J347zROKQ6Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762374821</pqid></control><display><type>article</type><title>Turbulence measurements using a nanoscale thermal anemometry probe</title><source>Cambridge Journals</source><creator>BAILEY, SEAN C. C. ; KUNKEL, GARY J. ; HULTMARK, MARCUS ; VALLIKIVI, MARGIT ; HILL, JEFFREY P. ; MEYER, KARL A. ; TSAY, CANDICE ; ARNOLD, CRAIG B. ; SMITS, ALEXANDER J.</creator><creatorcontrib>BAILEY, SEAN C. C. ; KUNKEL, GARY J. ; HULTMARK, MARCUS ; VALLIKIVI, MARGIT ; HILL, JEFFREY P. ; MEYER, KARL A. ; TSAY, CANDICE ; ARNOLD, CRAIG B. ; SMITS, ALEXANDER J.</creatorcontrib><description>A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 μm × 60 μm, suspended between two current-carrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112010003447</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anemometry ; Applied sciences ; Electronics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Isotropic turbulence; homogeneous turbulence ; Measurement techniques ; MEMS/NEMS ; Micro- and nanoelectromechanical devices (mems/nems) ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Probes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Spatial filtering ; Thermal energy ; Turbulence ; Turbulent flow ; turbulent flows ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2010-11, Vol.663, p.160-179</ispartof><rights>Copyright © Cambridge University Press 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-5be66ea877c9fa524db609274dade5f6cfc47323ca962bc6a94c4c54c1489d953</citedby><cites>FETCH-LOGICAL-c563t-5be66ea877c9fa524db609274dade5f6cfc47323ca962bc6a94c4c54c1489d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112010003447/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23442631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAILEY, SEAN C. C.</creatorcontrib><creatorcontrib>KUNKEL, GARY J.</creatorcontrib><creatorcontrib>HULTMARK, MARCUS</creatorcontrib><creatorcontrib>VALLIKIVI, MARGIT</creatorcontrib><creatorcontrib>HILL, JEFFREY P.</creatorcontrib><creatorcontrib>MEYER, KARL A.</creatorcontrib><creatorcontrib>TSAY, CANDICE</creatorcontrib><creatorcontrib>ARNOLD, CRAIG B.</creatorcontrib><creatorcontrib>SMITS, ALEXANDER J.</creatorcontrib><title>Turbulence measurements using a nanoscale thermal anemometry probe</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 μm × 60 μm, suspended between two current-carrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics.</description><subject>Anemometry</subject><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Measurement techniques</subject><subject>MEMS/NEMS</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Probes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Spatial filtering</subject><subject>Thermal energy</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>turbulent flows</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLHUEQhZsQITfGH-BuEILZjOl3Ty-jSVRQRLyiu6amp0bHzMN0z0Duv7eHezGg6KoW56tTpw4hu4weMMrM9ytKOWeMU0YpFVKaD2TBpLa50VJ9JItZzmf9E_kc4wOlTFBrFuRwOYVyarH3mHUIcQrYYT_GbIpNf5dB1kM_RA8tZuM9hg7aDHrshg7HsMoew1DiF7JVQxtxZzO3yfXvX8ujk_zs4vj06MdZ7pUWY65K1BqhMMbbGhSXVamp5UZWUKGqta-9NIILD1bz0muw0kuvpGeysJVVYpvsr33T1b8TxtF1TfTYtinQMEVXSCsLxhVN5Ld3SaYl5wVTtEjo3gv0YZhCn_5wRnNhZMFZgtga8mGIMWDtHkPTQVg5Rt1cv3tVf9r5ujGGub46QO-b-LzIE8S1mL3zNdfEEf896xD-OG2EUU4fX7rb8xtqf55od5N4sckCXRma6g7_J347zROKQ6Gg</recordid><startdate>20101125</startdate><enddate>20101125</enddate><creator>BAILEY, SEAN C. C.</creator><creator>KUNKEL, GARY J.</creator><creator>HULTMARK, MARCUS</creator><creator>VALLIKIVI, MARGIT</creator><creator>HILL, JEFFREY P.</creator><creator>MEYER, KARL A.</creator><creator>TSAY, CANDICE</creator><creator>ARNOLD, CRAIG B.</creator><creator>SMITS, ALEXANDER J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20101125</creationdate><title>Turbulence measurements using a nanoscale thermal anemometry probe</title><author>BAILEY, SEAN C. C. ; KUNKEL, GARY J. ; HULTMARK, MARCUS ; VALLIKIVI, MARGIT ; HILL, JEFFREY P. ; MEYER, KARL A. ; TSAY, CANDICE ; ARNOLD, CRAIG B. ; SMITS, ALEXANDER J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-5be66ea877c9fa524db609274dade5f6cfc47323ca962bc6a94c4c54c1489d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anemometry</topic><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Measurement techniques</topic><topic>MEMS/NEMS</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Probes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Spatial filtering</topic><topic>Thermal energy</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>turbulent flows</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAILEY, SEAN C. C.</creatorcontrib><creatorcontrib>KUNKEL, GARY J.</creatorcontrib><creatorcontrib>HULTMARK, MARCUS</creatorcontrib><creatorcontrib>VALLIKIVI, MARGIT</creatorcontrib><creatorcontrib>HILL, JEFFREY P.</creatorcontrib><creatorcontrib>MEYER, KARL A.</creatorcontrib><creatorcontrib>TSAY, CANDICE</creatorcontrib><creatorcontrib>ARNOLD, CRAIG B.</creatorcontrib><creatorcontrib>SMITS, ALEXANDER J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAILEY, SEAN C. C.</au><au>KUNKEL, GARY J.</au><au>HULTMARK, MARCUS</au><au>VALLIKIVI, MARGIT</au><au>HILL, JEFFREY P.</au><au>MEYER, KARL A.</au><au>TSAY, CANDICE</au><au>ARNOLD, CRAIG B.</au><au>SMITS, ALEXANDER J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence measurements using a nanoscale thermal anemometry probe</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2010-11-25</date><risdate>2010</risdate><volume>663</volume><spage>160</spage><epage>179</epage><pages>160-179</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 μm × 60 μm, suspended between two current-carrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112010003447</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2010-11, Vol.663, p.160-179 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_849481250 |
source | Cambridge Journals |
subjects | Anemometry Applied sciences Electronics Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Instrumentation for fluid dynamics Isotropic turbulence homogeneous turbulence Measurement techniques MEMS/NEMS Micro- and nanoelectromechanical devices (mems/nems) Nanocomposites Nanomaterials Nanostructure Physics Probes Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Spatial filtering Thermal energy Turbulence Turbulent flow turbulent flows Turbulent flows, convection, and heat transfer |
title | Turbulence measurements using a nanoscale thermal anemometry probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20measurements%20using%20a%20nanoscale%20thermal%20anemometry%20probe&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=BAILEY,%20SEAN%20C.%20C.&rft.date=2010-11-25&rft.volume=663&rft.spage=160&rft.epage=179&rft.pages=160-179&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112010003447&rft_dat=%3Cproquest_cross%3E849481250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762374821&rft_id=info:pmid/&rft_cupid=10_1017_S0022112010003447&rfr_iscdi=true |