Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors

Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermochimica acta 2010-10, Vol.510 (1), p.126-136
Hauptverfasser: Anahory, Y., Guihard, M., Smeets, D., Karmouch, R., Schiettekatte, F., Vasseur, P., Desjardins, P., Hu, Liang, Allen, L.H., Leon-Gutierrez, E., Rodriguez-Viejo, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 126
container_title Thermochimica acta
container_volume 510
creator Anahory, Y.
Guihard, M.
Smeets, D.
Karmouch, R.
Schiettekatte, F.
Vasseur, P.
Desjardins, P.
Hu, Liang
Allen, L.H.
Leon-Gutierrez, E.
Rodriguez-Viejo, J.
description Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.
doi_str_mv 10.1016/j.tca.2010.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849480648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040603110002492</els_id><sourcerecordid>849480648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</originalsourceid><addsrcrecordid>eNp9UMFO3TAQtFCReKX9gN58Qb00r2snz3bEqULQVkLiUiTExdps1uCnvBjsgES_vqYP9djTaFczszsjxCcFawXKfN2uF8K1hjqDXQOYA7FSzurGGn3zTqwAOmgMtOpIvC9lCwBKO1iJ2wscciRcYpq_SLrHjLRwjr__biTOo9ylkac438kUZKk4cUP5pSw4yeU-zjLEaScJp5TjjqtWFp5LyuWDOAw4Ff74hsfi-uL819mP5vLq-8-zb5cNtZt-aXRgZKWJB2XIdAMZTWETgiKloQ_WugGcM1a3I4QBkDQMxllGvcHeblR7LD7vfR9yenzisvhdLMTThDOnp-Jd13cOTOcqU-2ZlFMpmYN_qD9jfvEK_GuNfutrjf61Rg_W1xqr5uTNHUsNGTLOFMs_oW5b6HtrK-90z-Ma9Tly9oUiz8RjzEyLH1P8z5U_eNyJMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849480648</pqid></control><display><type>article</type><title>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Anahory, Y. ; Guihard, M. ; Smeets, D. ; Karmouch, R. ; Schiettekatte, F. ; Vasseur, P. ; Desjardins, P. ; Hu, Liang ; Allen, L.H. ; Leon-Gutierrez, E. ; Rodriguez-Viejo, J.</creator><creatorcontrib>Anahory, Y. ; Guihard, M. ; Smeets, D. ; Karmouch, R. ; Schiettekatte, F. ; Vasseur, P. ; Desjardins, P. ; Hu, Liang ; Allen, L.H. ; Leon-Gutierrez, E. ; Rodriguez-Viejo, J.</creatorcontrib><description>Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2010.07.006</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Analytical chemistry ; Calorimetry ; Chemical and thermal methods ; Chemistry ; Devices ; Exact sciences and technology ; Finite-element modeling ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical models ; MEMS process ; Nanocalorimetry ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Silicon ; Surface science ; Thermal instruments, apparatus and techniques ; Thin films</subject><ispartof>Thermochimica acta, 2010-10, Vol.510 (1), p.126-136</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</citedby><cites>FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tca.2010.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23309977$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anahory, Y.</creatorcontrib><creatorcontrib>Guihard, M.</creatorcontrib><creatorcontrib>Smeets, D.</creatorcontrib><creatorcontrib>Karmouch, R.</creatorcontrib><creatorcontrib>Schiettekatte, F.</creatorcontrib><creatorcontrib>Vasseur, P.</creatorcontrib><creatorcontrib>Desjardins, P.</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Allen, L.H.</creatorcontrib><creatorcontrib>Leon-Gutierrez, E.</creatorcontrib><creatorcontrib>Rodriguez-Viejo, J.</creatorcontrib><title>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</title><title>Thermochimica acta</title><description>Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.</description><subject>Analytical chemistry</subject><subject>Calorimetry</subject><subject>Chemical and thermal methods</subject><subject>Chemistry</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Finite-element modeling</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical models</subject><subject>MEMS process</subject><subject>Nanocalorimetry</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Silicon</subject><subject>Surface science</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thin films</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMFO3TAQtFCReKX9gN58Qb00r2snz3bEqULQVkLiUiTExdps1uCnvBjsgES_vqYP9djTaFczszsjxCcFawXKfN2uF8K1hjqDXQOYA7FSzurGGn3zTqwAOmgMtOpIvC9lCwBKO1iJ2wscciRcYpq_SLrHjLRwjr__biTOo9ylkac438kUZKk4cUP5pSw4yeU-zjLEaScJp5TjjqtWFp5LyuWDOAw4Ff74hsfi-uL819mP5vLq-8-zb5cNtZt-aXRgZKWJB2XIdAMZTWETgiKloQ_WugGcM1a3I4QBkDQMxllGvcHeblR7LD7vfR9yenzisvhdLMTThDOnp-Jd13cOTOcqU-2ZlFMpmYN_qD9jfvEK_GuNfutrjf61Rg_W1xqr5uTNHUsNGTLOFMs_oW5b6HtrK-90z-Ma9Tly9oUiz8RjzEyLH1P8z5U_eNyJMw</recordid><startdate>20101020</startdate><enddate>20101020</enddate><creator>Anahory, Y.</creator><creator>Guihard, M.</creator><creator>Smeets, D.</creator><creator>Karmouch, R.</creator><creator>Schiettekatte, F.</creator><creator>Vasseur, P.</creator><creator>Desjardins, P.</creator><creator>Hu, Liang</creator><creator>Allen, L.H.</creator><creator>Leon-Gutierrez, E.</creator><creator>Rodriguez-Viejo, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101020</creationdate><title>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</title><author>Anahory, Y. ; Guihard, M. ; Smeets, D. ; Karmouch, R. ; Schiettekatte, F. ; Vasseur, P. ; Desjardins, P. ; Hu, Liang ; Allen, L.H. ; Leon-Gutierrez, E. ; Rodriguez-Viejo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Calorimetry</topic><topic>Chemical and thermal methods</topic><topic>Chemistry</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Finite-element modeling</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical models</topic><topic>MEMS process</topic><topic>Nanocalorimetry</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Silicon</topic><topic>Surface science</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anahory, Y.</creatorcontrib><creatorcontrib>Guihard, M.</creatorcontrib><creatorcontrib>Smeets, D.</creatorcontrib><creatorcontrib>Karmouch, R.</creatorcontrib><creatorcontrib>Schiettekatte, F.</creatorcontrib><creatorcontrib>Vasseur, P.</creatorcontrib><creatorcontrib>Desjardins, P.</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Allen, L.H.</creatorcontrib><creatorcontrib>Leon-Gutierrez, E.</creatorcontrib><creatorcontrib>Rodriguez-Viejo, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anahory, Y.</au><au>Guihard, M.</au><au>Smeets, D.</au><au>Karmouch, R.</au><au>Schiettekatte, F.</au><au>Vasseur, P.</au><au>Desjardins, P.</au><au>Hu, Liang</au><au>Allen, L.H.</au><au>Leon-Gutierrez, E.</au><au>Rodriguez-Viejo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</atitle><jtitle>Thermochimica acta</jtitle><date>2010-10-20</date><risdate>2010</risdate><volume>510</volume><issue>1</issue><spage>126</spage><epage>136</epage><pages>126-136</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2010.07.006</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6031
ispartof Thermochimica acta, 2010-10, Vol.510 (1), p.126-136
issn 0040-6031
1872-762X
language eng
recordid cdi_proquest_miscellaneous_849480648
source Elsevier ScienceDirect Journals Complete
subjects Analytical chemistry
Calorimetry
Chemical and thermal methods
Chemistry
Devices
Exact sciences and technology
Finite-element modeling
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical models
MEMS process
Nanocalorimetry
Nanocomposites
Nanomaterials
Nanostructure
Physics
Silicon
Surface science
Thermal instruments, apparatus and techniques
Thin films
title Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication,%20characterization%20and%20modeling%20of%20single-crystal%20thin%20film%20calorimeter%20sensors&rft.jtitle=Thermochimica%20acta&rft.au=Anahory,%20Y.&rft.date=2010-10-20&rft.volume=510&rft.issue=1&rft.spage=126&rft.epage=136&rft.pages=126-136&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2010.07.006&rft_dat=%3Cproquest_cross%3E849480648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849480648&rft_id=info:pmid/&rft_els_id=S0040603110002492&rfr_iscdi=true