Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors
Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalli...
Gespeichert in:
Veröffentlicht in: | Thermochimica acta 2010-10, Vol.510 (1), p.126-136 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 1 |
container_start_page | 126 |
container_title | Thermochimica acta |
container_volume | 510 |
creator | Anahory, Y. Guihard, M. Smeets, D. Karmouch, R. Schiettekatte, F. Vasseur, P. Desjardins, P. Hu, Liang Allen, L.H. Leon-Gutierrez, E. Rodriguez-Viejo, J. |
description | Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science. |
doi_str_mv | 10.1016/j.tca.2010.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849480648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040603110002492</els_id><sourcerecordid>849480648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</originalsourceid><addsrcrecordid>eNp9UMFO3TAQtFCReKX9gN58Qb00r2snz3bEqULQVkLiUiTExdps1uCnvBjsgES_vqYP9djTaFczszsjxCcFawXKfN2uF8K1hjqDXQOYA7FSzurGGn3zTqwAOmgMtOpIvC9lCwBKO1iJ2wscciRcYpq_SLrHjLRwjr__biTOo9ylkac438kUZKk4cUP5pSw4yeU-zjLEaScJp5TjjqtWFp5LyuWDOAw4Ff74hsfi-uL819mP5vLq-8-zb5cNtZt-aXRgZKWJB2XIdAMZTWETgiKloQ_WugGcM1a3I4QBkDQMxllGvcHeblR7LD7vfR9yenzisvhdLMTThDOnp-Jd13cOTOcqU-2ZlFMpmYN_qD9jfvEK_GuNfutrjf61Rg_W1xqr5uTNHUsNGTLOFMs_oW5b6HtrK-90z-Ma9Tly9oUiz8RjzEyLH1P8z5U_eNyJMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849480648</pqid></control><display><type>article</type><title>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Anahory, Y. ; Guihard, M. ; Smeets, D. ; Karmouch, R. ; Schiettekatte, F. ; Vasseur, P. ; Desjardins, P. ; Hu, Liang ; Allen, L.H. ; Leon-Gutierrez, E. ; Rodriguez-Viejo, J.</creator><creatorcontrib>Anahory, Y. ; Guihard, M. ; Smeets, D. ; Karmouch, R. ; Schiettekatte, F. ; Vasseur, P. ; Desjardins, P. ; Hu, Liang ; Allen, L.H. ; Leon-Gutierrez, E. ; Rodriguez-Viejo, J.</creatorcontrib><description>Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2010.07.006</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Analytical chemistry ; Calorimetry ; Chemical and thermal methods ; Chemistry ; Devices ; Exact sciences and technology ; Finite-element modeling ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical models ; MEMS process ; Nanocalorimetry ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Silicon ; Surface science ; Thermal instruments, apparatus and techniques ; Thin films</subject><ispartof>Thermochimica acta, 2010-10, Vol.510 (1), p.126-136</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</citedby><cites>FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tca.2010.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23309977$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anahory, Y.</creatorcontrib><creatorcontrib>Guihard, M.</creatorcontrib><creatorcontrib>Smeets, D.</creatorcontrib><creatorcontrib>Karmouch, R.</creatorcontrib><creatorcontrib>Schiettekatte, F.</creatorcontrib><creatorcontrib>Vasseur, P.</creatorcontrib><creatorcontrib>Desjardins, P.</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Allen, L.H.</creatorcontrib><creatorcontrib>Leon-Gutierrez, E.</creatorcontrib><creatorcontrib>Rodriguez-Viejo, J.</creatorcontrib><title>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</title><title>Thermochimica acta</title><description>Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.</description><subject>Analytical chemistry</subject><subject>Calorimetry</subject><subject>Chemical and thermal methods</subject><subject>Chemistry</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Finite-element modeling</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical models</subject><subject>MEMS process</subject><subject>Nanocalorimetry</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Silicon</subject><subject>Surface science</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thin films</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMFO3TAQtFCReKX9gN58Qb00r2snz3bEqULQVkLiUiTExdps1uCnvBjsgES_vqYP9djTaFczszsjxCcFawXKfN2uF8K1hjqDXQOYA7FSzurGGn3zTqwAOmgMtOpIvC9lCwBKO1iJ2wscciRcYpq_SLrHjLRwjr__biTOo9ylkac438kUZKk4cUP5pSw4yeU-zjLEaScJp5TjjqtWFp5LyuWDOAw4Ff74hsfi-uL819mP5vLq-8-zb5cNtZt-aXRgZKWJB2XIdAMZTWETgiKloQ_WugGcM1a3I4QBkDQMxllGvcHeblR7LD7vfR9yenzisvhdLMTThDOnp-Jd13cOTOcqU-2ZlFMpmYN_qD9jfvEK_GuNfutrjf61Rg_W1xqr5uTNHUsNGTLOFMs_oW5b6HtrK-90z-Ma9Tly9oUiz8RjzEyLH1P8z5U_eNyJMw</recordid><startdate>20101020</startdate><enddate>20101020</enddate><creator>Anahory, Y.</creator><creator>Guihard, M.</creator><creator>Smeets, D.</creator><creator>Karmouch, R.</creator><creator>Schiettekatte, F.</creator><creator>Vasseur, P.</creator><creator>Desjardins, P.</creator><creator>Hu, Liang</creator><creator>Allen, L.H.</creator><creator>Leon-Gutierrez, E.</creator><creator>Rodriguez-Viejo, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101020</creationdate><title>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</title><author>Anahory, Y. ; Guihard, M. ; Smeets, D. ; Karmouch, R. ; Schiettekatte, F. ; Vasseur, P. ; Desjardins, P. ; Hu, Liang ; Allen, L.H. ; Leon-Gutierrez, E. ; Rodriguez-Viejo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2feae12ceb16c64bc62cf5ff1c1209f778b0886723d0fb0ac20b687ea25a97513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Calorimetry</topic><topic>Chemical and thermal methods</topic><topic>Chemistry</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Finite-element modeling</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical models</topic><topic>MEMS process</topic><topic>Nanocalorimetry</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Silicon</topic><topic>Surface science</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anahory, Y.</creatorcontrib><creatorcontrib>Guihard, M.</creatorcontrib><creatorcontrib>Smeets, D.</creatorcontrib><creatorcontrib>Karmouch, R.</creatorcontrib><creatorcontrib>Schiettekatte, F.</creatorcontrib><creatorcontrib>Vasseur, P.</creatorcontrib><creatorcontrib>Desjardins, P.</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Allen, L.H.</creatorcontrib><creatorcontrib>Leon-Gutierrez, E.</creatorcontrib><creatorcontrib>Rodriguez-Viejo, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anahory, Y.</au><au>Guihard, M.</au><au>Smeets, D.</au><au>Karmouch, R.</au><au>Schiettekatte, F.</au><au>Vasseur, P.</au><au>Desjardins, P.</au><au>Hu, Liang</au><au>Allen, L.H.</au><au>Leon-Gutierrez, E.</au><au>Rodriguez-Viejo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors</atitle><jtitle>Thermochimica acta</jtitle><date>2010-10-20</date><risdate>2010</risdate><volume>510</volume><issue>1</issue><spage>126</spage><epage>136</epage><pages>126-136</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress free-standing silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2010.07.006</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6031 |
ispartof | Thermochimica acta, 2010-10, Vol.510 (1), p.126-136 |
issn | 0040-6031 1872-762X |
language | eng |
recordid | cdi_proquest_miscellaneous_849480648 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Analytical chemistry Calorimetry Chemical and thermal methods Chemistry Devices Exact sciences and technology Finite-element modeling Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mathematical models MEMS process Nanocalorimetry Nanocomposites Nanomaterials Nanostructure Physics Silicon Surface science Thermal instruments, apparatus and techniques Thin films |
title | Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication,%20characterization%20and%20modeling%20of%20single-crystal%20thin%20film%20calorimeter%20sensors&rft.jtitle=Thermochimica%20acta&rft.au=Anahory,%20Y.&rft.date=2010-10-20&rft.volume=510&rft.issue=1&rft.spage=126&rft.epage=136&rft.pages=126-136&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2010.07.006&rft_dat=%3Cproquest_cross%3E849480648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849480648&rft_id=info:pmid/&rft_els_id=S0040603110002492&rfr_iscdi=true |