Application of factor analysis for service R&D classification: A case study on the Korean ICT industry

This paper introduces an application of factor analysis for classifying and illuminating the nature of distinct dimensions of service research and development (R&D) which are difficult to examine due to the unique characteristics of services. The application is based upon the concept that firms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2011-03, Vol.38 (3), p.2119-2124
Hauptverfasser: Lee, Yeonhee, Lee, Heyjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2124
container_issue 3
container_start_page 2119
container_title Expert systems with applications
container_volume 38
creator Lee, Yeonhee
Lee, Heyjin
description This paper introduces an application of factor analysis for classifying and illuminating the nature of distinct dimensions of service research and development (R&D) which are difficult to examine due to the unique characteristics of services. The application is based upon the concept that firms would benefit from clarifying R&D and R&D-like activities to assist their R&D decision. Using principal component analysis (PCA) of factor analysis, a number of possibly correlated R&D activities is transformed into a smaller number of uncorrelated activities called principal components, and firms can identify the patterns of service R&D, express their similarities and differences, and develop its R&D portfolio. A case example for service R&D in the Korean ICT industry is provided.
doi_str_mv 10.1016/j.eswa.2010.07.152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849480571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417410007803</els_id><sourcerecordid>849480571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-362b401efa442d74f8fa7947b75c7e7763d39b50a6bb8b1c31fc8169322e7c903</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU85qZeuSZN2WvGyrJ8oCKLnkKYTzFLbNdNd2X9vlvXsZYYZnndgHsbOpJhKIcurxRTpx05zkRYCprLI99hEVqCyEmq1zyaiLiDTEvQhOyJaCCFBCJgwP1suu-DsGIaeD55768YhctvbbkOBuE8DYVwHh_zt_Ja7zhIF_5e45jPuLCGncdVueDoxfiJ_HiLanj_N33no2xWNcXPCDrztCE__-jH7uL97nz9mL68PT_PZS-ZUWYyZKvNGC4neap23oH3lLdQaGigcIECpWlU3hbBl01SNdEp6V8myVnmO4GqhjtnF7u4yDt8rpNF8BXLYdbbHYUWm0rWuRAEykZf_ksmPFIVONaH5DnVxIIrozTKGLxs3Rgqz1W8WZqvfbPUbASbpT6GbXQjTu-uA0ZAL2DtsQ0Q3mnYI_8V_Ab4FjYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701054701</pqid></control><display><type>article</type><title>Application of factor analysis for service R&amp;D classification: A case study on the Korean ICT industry</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Yeonhee ; Lee, Heyjin</creator><creatorcontrib>Lee, Yeonhee ; Lee, Heyjin</creatorcontrib><description><![CDATA[This paper introduces an application of factor analysis for classifying and illuminating the nature of distinct dimensions of service research and development (R&D) which are difficult to examine due to the unique characteristics of services. The application is based upon the concept that firms would benefit from clarifying R&D and R&D-like activities to assist their R&D decision. Using principal component analysis (PCA) of factor analysis, a number of possibly correlated R&D activities is transformed into a smaller number of uncorrelated activities called principal components, and firms can identify the patterns of service R&D, express their similarities and differences, and develop its R&D portfolio. A case example for service R&D in the Korean ICT industry is provided.]]></description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2010.07.152</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analogies ; Classification ; Correlation analysis ; Expert systems ; Factor analysis ; Illuminating ; Korean ICT industry ; Principal component analysis ; Principal component analysis (PCA) ; Research and development ; Service R&amp;D</subject><ispartof>Expert systems with applications, 2011-03, Vol.38 (3), p.2119-2124</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-362b401efa442d74f8fa7947b75c7e7763d39b50a6bb8b1c31fc8169322e7c903</citedby><cites>FETCH-LOGICAL-c365t-362b401efa442d74f8fa7947b75c7e7763d39b50a6bb8b1c31fc8169322e7c903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2010.07.152$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Lee, Yeonhee</creatorcontrib><creatorcontrib>Lee, Heyjin</creatorcontrib><title>Application of factor analysis for service R&amp;D classification: A case study on the Korean ICT industry</title><title>Expert systems with applications</title><description><![CDATA[This paper introduces an application of factor analysis for classifying and illuminating the nature of distinct dimensions of service research and development (R&D) which are difficult to examine due to the unique characteristics of services. The application is based upon the concept that firms would benefit from clarifying R&D and R&D-like activities to assist their R&D decision. Using principal component analysis (PCA) of factor analysis, a number of possibly correlated R&D activities is transformed into a smaller number of uncorrelated activities called principal components, and firms can identify the patterns of service R&D, express their similarities and differences, and develop its R&D portfolio. A case example for service R&D in the Korean ICT industry is provided.]]></description><subject>Analogies</subject><subject>Classification</subject><subject>Correlation analysis</subject><subject>Expert systems</subject><subject>Factor analysis</subject><subject>Illuminating</subject><subject>Korean ICT industry</subject><subject>Principal component analysis</subject><subject>Principal component analysis (PCA)</subject><subject>Research and development</subject><subject>Service R&amp;D</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU85qZeuSZN2WvGyrJ8oCKLnkKYTzFLbNdNd2X9vlvXsZYYZnndgHsbOpJhKIcurxRTpx05zkRYCprLI99hEVqCyEmq1zyaiLiDTEvQhOyJaCCFBCJgwP1suu-DsGIaeD55768YhctvbbkOBuE8DYVwHh_zt_Ja7zhIF_5e45jPuLCGncdVueDoxfiJ_HiLanj_N33no2xWNcXPCDrztCE__-jH7uL97nz9mL68PT_PZS-ZUWYyZKvNGC4neap23oH3lLdQaGigcIECpWlU3hbBl01SNdEp6V8myVnmO4GqhjtnF7u4yDt8rpNF8BXLYdbbHYUWm0rWuRAEykZf_ksmPFIVONaH5DnVxIIrozTKGLxs3Rgqz1W8WZqvfbPUbASbpT6GbXQjTu-uA0ZAL2DtsQ0Q3mnYI_8V_Ab4FjYc</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Lee, Yeonhee</creator><creator>Lee, Heyjin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110301</creationdate><title>Application of factor analysis for service R&amp;D classification: A case study on the Korean ICT industry</title><author>Lee, Yeonhee ; Lee, Heyjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-362b401efa442d74f8fa7947b75c7e7763d39b50a6bb8b1c31fc8169322e7c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analogies</topic><topic>Classification</topic><topic>Correlation analysis</topic><topic>Expert systems</topic><topic>Factor analysis</topic><topic>Illuminating</topic><topic>Korean ICT industry</topic><topic>Principal component analysis</topic><topic>Principal component analysis (PCA)</topic><topic>Research and development</topic><topic>Service R&amp;D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yeonhee</creatorcontrib><creatorcontrib>Lee, Heyjin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yeonhee</au><au>Lee, Heyjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of factor analysis for service R&amp;D classification: A case study on the Korean ICT industry</atitle><jtitle>Expert systems with applications</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>38</volume><issue>3</issue><spage>2119</spage><epage>2124</epage><pages>2119-2124</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract><![CDATA[This paper introduces an application of factor analysis for classifying and illuminating the nature of distinct dimensions of service research and development (R&D) which are difficult to examine due to the unique characteristics of services. The application is based upon the concept that firms would benefit from clarifying R&D and R&D-like activities to assist their R&D decision. Using principal component analysis (PCA) of factor analysis, a number of possibly correlated R&D activities is transformed into a smaller number of uncorrelated activities called principal components, and firms can identify the patterns of service R&D, express their similarities and differences, and develop its R&D portfolio. A case example for service R&D in the Korean ICT industry is provided.]]></abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2010.07.152</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2011-03, Vol.38 (3), p.2119-2124
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_849480571
source Elsevier ScienceDirect Journals
subjects Analogies
Classification
Correlation analysis
Expert systems
Factor analysis
Illuminating
Korean ICT industry
Principal component analysis
Principal component analysis (PCA)
Research and development
Service R&D
title Application of factor analysis for service R&D classification: A case study on the Korean ICT industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20factor%20analysis%20for%20service%20R&D%20classification:%20A%20case%20study%20on%20the%20Korean%20ICT%20industry&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Lee,%20Yeonhee&rft.date=2011-03-01&rft.volume=38&rft.issue=3&rft.spage=2119&rft.epage=2124&rft.pages=2119-2124&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2010.07.152&rft_dat=%3Cproquest_cross%3E849480571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701054701&rft_id=info:pmid/&rft_els_id=S0957417410007803&rfr_iscdi=true