Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches
A nadir objective vector is constructed from the worst Pareto-optimal objective values in a multiobjective optimization problem and is an important entity to compute because of its significance in estimating the range of objective values in the Pareto-optimal front and also in executing a number of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2010-12, Vol.14 (6), p.821-841 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 841 |
---|---|
container_issue | 6 |
container_start_page | 821 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 14 |
creator | Deb, Kalyanmoy Miettinen, Kaisa Chaudhuri, Shamik |
description | A nadir objective vector is constructed from the worst Pareto-optimal objective values in a multiobjective optimization problem and is an important entity to compute because of its significance in estimating the range of objective values in the Pareto-optimal front and also in executing a number of interactive multiobjective optimization techniques. Along with the ideal objective vector, it is also needed for the purpose of normalizing different objectives, so as to facilitate a comparison and agglomeration of the objectives. However, the task of estimating the nadir objective vector necessitates information about the complete Pareto-optimal front and has been reported to be a difficult task, and importantly an unsolved and open research issue. In this paper, we propose certain modifications to an existing evolutionary multiobjective optimization procedure to focus its search toward the extreme objective values and combine it with a reference-point based local search approach to constitute a couple of hybrid procedures for a reliable estimation of the nadir objective vector. With up to 20-objective optimization test problems and on a three-objective engineering design optimization problem, one of the proposed procedures is found to be capable of finding the nadir objective vector reliably. The study clearly shows the significance of an evolutionary computing based search procedure in assisting to solve an age-old important task in the field of multiobjective optimization. |
doi_str_mv | 10.1109/TEVC.2010.2041667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_849478955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5557782</ieee_id><sourcerecordid>849478955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-ae1685260f906af3dc1edd009af086bd3f7bc326d36739abb61b449b6a80fca23</originalsourceid><addsrcrecordid>eNpdkU9r2zAYh03ZoF3bD1B6EYyxk9NXlixLxxCyZRDWw9LSm3mtP6uCa2WS05FvP5mEHHZ6JfT8fhKPiuKOwoxSUA-b5fNiVkHeVsCpEM1FcUUVpyVAJT7kNUhVNo18uSw-pbQFoLym6qrwm_AXoyE4kGUa_RuOPgwkOPITjY_ksdtaPfp3S57zDJE8JT_8JkhWhy56M4HL99DvpxTGQ64xZB009uSXxahfyXy3iwH1q003xUeHfbK3p3ldPH1bbharcv34_cdivi41F3ws0VIh60qAUyDQMaOpNQZAoQMpOsNc02lWCcNEwxR2naAd56oTKMFprNh18fXYmy_-s7dpbN980rbvcbBhn1rJFW-kqutMfv6P3IZ9HPLjWgoMaMO4opmiR0rHkFK0rt3F7CkeMtRO7tvJfTu5b0_uc-bLqRlTluEiDtqnc7BiNaNKyszdHzlvrT0f13Wdf6pi_wD3YozN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030173491</pqid></control><display><type>article</type><title>Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches</title><source>IEEE Electronic Library (IEL)</source><creator>Deb, Kalyanmoy ; Miettinen, Kaisa ; Chaudhuri, Shamik</creator><creatorcontrib>Deb, Kalyanmoy ; Miettinen, Kaisa ; Chaudhuri, Shamik</creatorcontrib><description>A nadir objective vector is constructed from the worst Pareto-optimal objective values in a multiobjective optimization problem and is an important entity to compute because of its significance in estimating the range of objective values in the Pareto-optimal front and also in executing a number of interactive multiobjective optimization techniques. Along with the ideal objective vector, it is also needed for the purpose of normalizing different objectives, so as to facilitate a comparison and agglomeration of the objectives. However, the task of estimating the nadir objective vector necessitates information about the complete Pareto-optimal front and has been reported to be a difficult task, and importantly an unsolved and open research issue. In this paper, we propose certain modifications to an existing evolutionary multiobjective optimization procedure to focus its search toward the extreme objective values and combine it with a reference-point based local search approach to constitute a couple of hybrid procedures for a reliable estimation of the nadir objective vector. With up to 20-objective optimization test problems and on a three-objective engineering design optimization problem, one of the proposed procedures is found to be capable of finding the nadir objective vector reliably. The study clearly shows the significance of an evolutionary computing based search procedure in assisting to solve an age-old important task in the field of multiobjective optimization.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2010.2041667</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Decision making ; Decision theory. Utility theory ; Estimating ; Estimation ; Evolutionary ; Evolutionary multiobjective optimization (EMO) ; Exact sciences and technology ; hybrid procedure ; ideal point ; Interactive ; Mathematical analysis ; Mechanical engineering. Machine design ; Minimization ; multiobjective optimization ; multiple objectives ; nadir point ; nondominated sorting GA ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Pareto optimality ; Pareto optimization ; Pareto optimum ; Search problems ; Searching ; Studies ; Tasks ; Vectors (mathematics)</subject><ispartof>IEEE transactions on evolutionary computation, 2010-12, Vol.14 (6), p.821-841</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-ae1685260f906af3dc1edd009af086bd3f7bc326d36739abb61b449b6a80fca23</citedby><cites>FETCH-LOGICAL-c464t-ae1685260f906af3dc1edd009af086bd3f7bc326d36739abb61b449b6a80fca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5557782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5557782$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23531988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Miettinen, Kaisa</creatorcontrib><creatorcontrib>Chaudhuri, Shamik</creatorcontrib><title>Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>A nadir objective vector is constructed from the worst Pareto-optimal objective values in a multiobjective optimization problem and is an important entity to compute because of its significance in estimating the range of objective values in the Pareto-optimal front and also in executing a number of interactive multiobjective optimization techniques. Along with the ideal objective vector, it is also needed for the purpose of normalizing different objectives, so as to facilitate a comparison and agglomeration of the objectives. However, the task of estimating the nadir objective vector necessitates information about the complete Pareto-optimal front and has been reported to be a difficult task, and importantly an unsolved and open research issue. In this paper, we propose certain modifications to an existing evolutionary multiobjective optimization procedure to focus its search toward the extreme objective values and combine it with a reference-point based local search approach to constitute a couple of hybrid procedures for a reliable estimation of the nadir objective vector. With up to 20-objective optimization test problems and on a three-objective engineering design optimization problem, one of the proposed procedures is found to be capable of finding the nadir objective vector reliably. The study clearly shows the significance of an evolutionary computing based search procedure in assisting to solve an age-old important task in the field of multiobjective optimization.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Decision making</subject><subject>Decision theory. Utility theory</subject><subject>Estimating</subject><subject>Estimation</subject><subject>Evolutionary</subject><subject>Evolutionary multiobjective optimization (EMO)</subject><subject>Exact sciences and technology</subject><subject>hybrid procedure</subject><subject>ideal point</subject><subject>Interactive</subject><subject>Mathematical analysis</subject><subject>Mechanical engineering. Machine design</subject><subject>Minimization</subject><subject>multiobjective optimization</subject><subject>multiple objectives</subject><subject>nadir point</subject><subject>nondominated sorting GA</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Search problems</subject><subject>Searching</subject><subject>Studies</subject><subject>Tasks</subject><subject>Vectors (mathematics)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9r2zAYh03ZoF3bD1B6EYyxk9NXlixLxxCyZRDWw9LSm3mtP6uCa2WS05FvP5mEHHZ6JfT8fhKPiuKOwoxSUA-b5fNiVkHeVsCpEM1FcUUVpyVAJT7kNUhVNo18uSw-pbQFoLym6qrwm_AXoyE4kGUa_RuOPgwkOPITjY_ksdtaPfp3S57zDJE8JT_8JkhWhy56M4HL99DvpxTGQ64xZB009uSXxahfyXy3iwH1q003xUeHfbK3p3ldPH1bbharcv34_cdivi41F3ws0VIh60qAUyDQMaOpNQZAoQMpOsNc02lWCcNEwxR2naAd56oTKMFprNh18fXYmy_-s7dpbN980rbvcbBhn1rJFW-kqutMfv6P3IZ9HPLjWgoMaMO4opmiR0rHkFK0rt3F7CkeMtRO7tvJfTu5b0_uc-bLqRlTluEiDtqnc7BiNaNKyszdHzlvrT0f13Wdf6pi_wD3YozN</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Deb, Kalyanmoy</creator><creator>Miettinen, Kaisa</creator><creator>Chaudhuri, Shamik</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101201</creationdate><title>Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches</title><author>Deb, Kalyanmoy ; Miettinen, Kaisa ; Chaudhuri, Shamik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-ae1685260f906af3dc1edd009af086bd3f7bc326d36739abb61b449b6a80fca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Decision making</topic><topic>Decision theory. Utility theory</topic><topic>Estimating</topic><topic>Estimation</topic><topic>Evolutionary</topic><topic>Evolutionary multiobjective optimization (EMO)</topic><topic>Exact sciences and technology</topic><topic>hybrid procedure</topic><topic>ideal point</topic><topic>Interactive</topic><topic>Mathematical analysis</topic><topic>Mechanical engineering. Machine design</topic><topic>Minimization</topic><topic>multiobjective optimization</topic><topic>multiple objectives</topic><topic>nadir point</topic><topic>nondominated sorting GA</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Search problems</topic><topic>Searching</topic><topic>Studies</topic><topic>Tasks</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Miettinen, Kaisa</creatorcontrib><creatorcontrib>Chaudhuri, Shamik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deb, Kalyanmoy</au><au>Miettinen, Kaisa</au><au>Chaudhuri, Shamik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>14</volume><issue>6</issue><spage>821</spage><epage>841</epage><pages>821-841</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>A nadir objective vector is constructed from the worst Pareto-optimal objective values in a multiobjective optimization problem and is an important entity to compute because of its significance in estimating the range of objective values in the Pareto-optimal front and also in executing a number of interactive multiobjective optimization techniques. Along with the ideal objective vector, it is also needed for the purpose of normalizing different objectives, so as to facilitate a comparison and agglomeration of the objectives. However, the task of estimating the nadir objective vector necessitates information about the complete Pareto-optimal front and has been reported to be a difficult task, and importantly an unsolved and open research issue. In this paper, we propose certain modifications to an existing evolutionary multiobjective optimization procedure to focus its search toward the extreme objective values and combine it with a reference-point based local search approach to constitute a couple of hybrid procedures for a reliable estimation of the nadir objective vector. With up to 20-objective optimization test problems and on a three-objective engineering design optimization problem, one of the proposed procedures is found to be capable of finding the nadir objective vector reliably. The study clearly shows the significance of an evolutionary computing based search procedure in assisting to solve an age-old important task in the field of multiobjective optimization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2010.2041667</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2010-12, Vol.14 (6), p.821-841 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_849478955 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Decision making Decision theory. Utility theory Estimating Estimation Evolutionary Evolutionary multiobjective optimization (EMO) Exact sciences and technology hybrid procedure ideal point Interactive Mathematical analysis Mechanical engineering. Machine design Minimization multiobjective optimization multiple objectives nadir point nondominated sorting GA Operational research and scientific management Operational research. Management science Optimization Pareto optimality Pareto optimization Pareto optimum Search problems Searching Studies Tasks Vectors (mathematics) |
title | Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20Estimation%20of%20Nadir%20Objective%20Vector%20Using%20a%20Hybrid%20of%20Evolutionary%20and%20Local%20Search%20Approaches&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Deb,%20Kalyanmoy&rft.date=2010-12-01&rft.volume=14&rft.issue=6&rft.spage=821&rft.epage=841&rft.pages=821-841&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2010.2041667&rft_dat=%3Cproquest_RIE%3E849478955%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030173491&rft_id=info:pmid/&rft_ieee_id=5557782&rfr_iscdi=true |