LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters

We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (∼1015 M⊙) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2010-11, Vol.409 (1), p.169-183
Hauptverfasser: Smith, Graham P., Khosroshahi, Habib G., Dariush, A., Sanderson, A. J. R., Ponman, T. J., Stott, J. P., Haines, C. P., Egami, E., Stark, D. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 169
container_title Monthly notices of the Royal Astronomical Society
container_volume 409
creator Smith, Graham P.
Khosroshahi, Habib G.
Dariush, A.
Sanderson, A. J. R.
Ponman, T. J.
Stott, J. P.
Haines, C. P.
Egami, E.
Stark, D. P.
description We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (∼1015 M⊙) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ∝−(0.13 ± 0.02)Δm12. The fraction of clusters with ‘large’ luminosity gaps is p(Δm12≥ 1) = 0.37 ± 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with ‘extreme’ luminosity gaps, Δm12≥ 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. ‘BCG dominance’ is therefore a phase that a cluster may evolve through and is not an evolutionary ‘cul-de-sac’. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.
doi_str_mv 10.1111/j.1365-2966.2010.17311.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_849477308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2010.17311.x</oup_id><sourcerecordid>849477308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5191-b8018a324e5aaf14933cac13383ed6d4c8a1a8789fe7ceff35707c4e7f37b4263</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EEqXwHywkBJd0bY8TOxyQUAW7oPKxLEiIi-W6k8YlHyVOdtt_v0679AACX2yNn2dkz0sI5WzG4zrbzDhkaSLyLJsJNlYVcD7b3SOT08V9MmEM0kQrzh-SRyFsGGMSRDYh14t2PlxdvaSubRp0vW_WtC-RrtraN7ZxSG2zoqG0W6RtQZedX5c9hp66agg9dnRtK7vzGOiN78uDakPAelntaelD33b70atj0V_jbys8Jg8KWwV8crdPybe3b77OL5LFp_N389eLxKU858lSM64tCImptQWXOYCzjgNowFW2kk5bbrXSeYHKYVFAqphyElUBailFBlPy_Nh327W_hvhuU_vgsKpsg-0QjJa5VAqYjuSL_5I8UzzOUsW5TcnTP9BNO3RN_IdRGfAcUiki9OwOssHZqujiMH0w287XttsbAVIIrfPIvTpyN77C_emeMzPGazZmTNGMKZoxXnOI1-zMh49fDsfYAI4N2mH7Dz35S49WcrRiRrg7ebb7aTIFKjUX338YOH9_Oefq0nyGW5B5uZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763193542</pqid></control><display><type>article</type><title>LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters</title><source>Wiley Journals</source><source>Oxford Journals Open Access Collection</source><creator>Smith, Graham P. ; Khosroshahi, Habib G. ; Dariush, A. ; Sanderson, A. J. R. ; Ponman, T. J. ; Stott, J. P. ; Haines, C. P. ; Egami, E. ; Stark, D. P.</creator><creatorcontrib>Smith, Graham P. ; Khosroshahi, Habib G. ; Dariush, A. ; Sanderson, A. J. R. ; Ponman, T. J. ; Stott, J. P. ; Haines, C. P. ; Egami, E. ; Stark, D. P.</creatorcontrib><description>We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (∼1015 M⊙) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ∝−(0.13 ± 0.02)Δm12. The fraction of clusters with ‘large’ luminosity gaps is p(Δm12≥ 1) = 0.37 ± 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with ‘extreme’ luminosity gaps, Δm12≥ 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. ‘BCG dominance’ is therefore a phase that a cluster may evolve through and is not an evolutionary ‘cul-de-sac’. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2010.17311.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Astronomy ; Clusters ; Computer simulation ; Dominance ; Earth, ocean, space ; Exact sciences and technology ; Galaxies ; galaxies: clusters: general ; galaxies: elliptical and lenticular ; galaxies: elliptical and lenticular, cD ; galaxies: haloes ; gravitational lensing: strong ; Luminosity ; Mathematical models ; Monte Carlo methods ; Space telescopes ; Stars &amp; galaxies ; Substructures ; X-rays: galaxies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2010-11, Vol.409 (1), p.169-183</ispartof><rights>2010 The Authors. Journal compilation © 2010 RAS 2010</rights><rights>2010 The Authors. Journal compilation © 2010 RAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5191-b8018a324e5aaf14933cac13383ed6d4c8a1a8789fe7ceff35707c4e7f37b4263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2010.17311.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2010.17311.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23422889$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Graham P.</creatorcontrib><creatorcontrib>Khosroshahi, Habib G.</creatorcontrib><creatorcontrib>Dariush, A.</creatorcontrib><creatorcontrib>Sanderson, A. J. R.</creatorcontrib><creatorcontrib>Ponman, T. J.</creatorcontrib><creatorcontrib>Stott, J. P.</creatorcontrib><creatorcontrib>Haines, C. P.</creatorcontrib><creatorcontrib>Egami, E.</creatorcontrib><creatorcontrib>Stark, D. P.</creatorcontrib><title>LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (∼1015 M⊙) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ∝−(0.13 ± 0.02)Δm12. The fraction of clusters with ‘large’ luminosity gaps is p(Δm12≥ 1) = 0.37 ± 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with ‘extreme’ luminosity gaps, Δm12≥ 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. ‘BCG dominance’ is therefore a phase that a cluster may evolve through and is not an evolutionary ‘cul-de-sac’. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.</description><subject>Astronomy</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Dominance</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Galaxies</subject><subject>galaxies: clusters: general</subject><subject>galaxies: elliptical and lenticular</subject><subject>galaxies: elliptical and lenticular, cD</subject><subject>galaxies: haloes</subject><subject>gravitational lensing: strong</subject><subject>Luminosity</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Space telescopes</subject><subject>Stars &amp; galaxies</subject><subject>Substructures</subject><subject>X-rays: galaxies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi0EEqXwHywkBJd0bY8TOxyQUAW7oPKxLEiIi-W6k8YlHyVOdtt_v0679AACX2yNn2dkz0sI5WzG4zrbzDhkaSLyLJsJNlYVcD7b3SOT08V9MmEM0kQrzh-SRyFsGGMSRDYh14t2PlxdvaSubRp0vW_WtC-RrtraN7ZxSG2zoqG0W6RtQZedX5c9hp66agg9dnRtK7vzGOiN78uDakPAelntaelD33b70atj0V_jbys8Jg8KWwV8crdPybe3b77OL5LFp_N389eLxKU858lSM64tCImptQWXOYCzjgNowFW2kk5bbrXSeYHKYVFAqphyElUBailFBlPy_Nh327W_hvhuU_vgsKpsg-0QjJa5VAqYjuSL_5I8UzzOUsW5TcnTP9BNO3RN_IdRGfAcUiki9OwOssHZqujiMH0w287XttsbAVIIrfPIvTpyN77C_emeMzPGazZmTNGMKZoxXnOI1-zMh49fDsfYAI4N2mH7Dz35S49WcrRiRrg7ebb7aTIFKjUX338YOH9_Oefq0nyGW5B5uZY</recordid><startdate>20101121</startdate><enddate>20101121</enddate><creator>Smith, Graham P.</creator><creator>Khosroshahi, Habib G.</creator><creator>Dariush, A.</creator><creator>Sanderson, A. J. R.</creator><creator>Ponman, T. J.</creator><creator>Stott, J. P.</creator><creator>Haines, C. P.</creator><creator>Egami, E.</creator><creator>Stark, D. P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20101121</creationdate><title>LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters</title><author>Smith, Graham P. ; Khosroshahi, Habib G. ; Dariush, A. ; Sanderson, A. J. R. ; Ponman, T. J. ; Stott, J. P. ; Haines, C. P. ; Egami, E. ; Stark, D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5191-b8018a324e5aaf14933cac13383ed6d4c8a1a8789fe7ceff35707c4e7f37b4263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astronomy</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Dominance</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Galaxies</topic><topic>galaxies: clusters: general</topic><topic>galaxies: elliptical and lenticular</topic><topic>galaxies: elliptical and lenticular, cD</topic><topic>galaxies: haloes</topic><topic>gravitational lensing: strong</topic><topic>Luminosity</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Space telescopes</topic><topic>Stars &amp; galaxies</topic><topic>Substructures</topic><topic>X-rays: galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Graham P.</creatorcontrib><creatorcontrib>Khosroshahi, Habib G.</creatorcontrib><creatorcontrib>Dariush, A.</creatorcontrib><creatorcontrib>Sanderson, A. J. R.</creatorcontrib><creatorcontrib>Ponman, T. J.</creatorcontrib><creatorcontrib>Stott, J. P.</creatorcontrib><creatorcontrib>Haines, C. P.</creatorcontrib><creatorcontrib>Egami, E.</creatorcontrib><creatorcontrib>Stark, D. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Graham P.</au><au>Khosroshahi, Habib G.</au><au>Dariush, A.</au><au>Sanderson, A. J. R.</au><au>Ponman, T. J.</au><au>Stott, J. P.</au><au>Haines, C. P.</au><au>Egami, E.</au><au>Stark, D. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2010-11-21</date><risdate>2010</risdate><volume>409</volume><issue>1</issue><spage>169</spage><epage>183</epage><pages>169-183</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (∼1015 M⊙) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ∝−(0.13 ± 0.02)Δm12. The fraction of clusters with ‘large’ luminosity gaps is p(Δm12≥ 1) = 0.37 ± 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with ‘extreme’ luminosity gaps, Δm12≥ 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. ‘BCG dominance’ is therefore a phase that a cluster may evolve through and is not an evolutionary ‘cul-de-sac’. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2010.17311.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2010-11, Vol.409 (1), p.169-183
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_849477308
source Wiley Journals; Oxford Journals Open Access Collection
subjects Astronomy
Clusters
Computer simulation
Dominance
Earth, ocean, space
Exact sciences and technology
Galaxies
galaxies: clusters: general
galaxies: elliptical and lenticular
galaxies: elliptical and lenticular, cD
galaxies: haloes
gravitational lensing: strong
Luminosity
Mathematical models
Monte Carlo methods
Space telescopes
Stars & galaxies
Substructures
X-rays: galaxies
title LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LoCuSS:%20connecting%20the%20dominance%20and%20shape%20of%20brightest%20cluster%20galaxies%20with%20the%20assembly%20history%20of%20massive%20clusters&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Smith,%20Graham%20P.&rft.date=2010-11-21&rft.volume=409&rft.issue=1&rft.spage=169&rft.epage=183&rft.pages=169-183&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2010.17311.x&rft_dat=%3Cproquest_pasca%3E849477308%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763193542&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2010.17311.x&rfr_iscdi=true